Use new Line.getSignedDistance().

This commit is contained in:
Jürg Lehni 2013-05-26 16:58:49 -07:00
parent f771233d37
commit 5d7cc2fb40

View file

@ -1200,6 +1200,7 @@ new function() { // Scope for methods that require numerical integration
p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7], p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7],
q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3], q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3],
q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7], q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7],
getSignedDistance = Line.getSignedDistance,
// Calculate the fat-line L for P is the baseline l and two // Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P. // offsets which completely encloses the curve P.
d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0, d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0,
@ -1304,7 +1305,8 @@ new function() { // Scope for methods that require numerical integration
* Calculating convex-hull is much easier than a set of arbitrary points. * Calculating convex-hull is much easier than a set of arbitrary points.
*/ */
function getConvexHull(dq0, dq1, dq2, dq3) { function getConvexHull(dq0, dq1, dq2, dq3) {
var distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1), var getSignedDistance = Line.getSignedDistance,
distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2); distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2);
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line // Check if [1/3, dq1] and [2/3, dq2] are on the same side of line
// [0,dq0, 1,dq3] // [0,dq0, 1,dq3]
@ -1370,14 +1372,6 @@ new function() { // Scope for methods that require numerical integration
[ 1, dq3, 0, dq0 ] [ 1, dq3, 0, dq0 ]
]; ];
} }
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
function getSignedDistance(a1x, a1y, a2x, a2y, bx, by) {
var m = (a2y - a1y) / (a2x - a1x),
b = a1y - (m * a1x);
return (by - (m * bx) - b) / Math.sqrt(m * m + 1);
}
/*#*/ } // options.fatline /*#*/ } // options.fatline
/** /**