Implement Curve#isLinear(), #isCollinear() & co without depending on the segments being part of a path.

This commit is contained in:
Jürg Lehni 2015-08-19 11:43:37 +02:00
parent 2366e03265
commit 59eec1f27b
2 changed files with 55 additions and 37 deletions

View file

@ -311,7 +311,7 @@ var Curve = Base.extend(/** @lends Curve# */{
* @see Path#isLinear() * @see Path#isLinear()
*/ */
isLinear: function() { isLinear: function() {
return this._segment1.isLinear(); return Segment.isLinear(this._segment1, this._segment2);
}, },
/** /**
@ -323,7 +323,8 @@ var Curve = Base.extend(/** @lends Curve# */{
* @see Segment#isCollinear(segment) * @see Segment#isCollinear(segment)
*/ */
isCollinear: function(curve) { isCollinear: function(curve) {
return this._segment1.isCollinear(curve._segment1); return Ssegment.isCollinear(this._segment1, this._segment2,
curve._segment1, curve._segment2);
}, },
/** /**
@ -334,7 +335,7 @@ var Curve = Base.extend(/** @lends Curve# */{
* @see Segment#isOrthogonalArc() * @see Segment#isOrthogonalArc()
*/ */
isOrthogonalArc: function() { isOrthogonalArc: function() {
return this._segment1.isOrthogonalArc(); return Segment.isOrthogonalArc(this._segment1, this._segment2);
}, },
// DOCS: Curve#getIntersections() // DOCS: Curve#getIntersections()

View file

@ -262,9 +262,7 @@ var Segment = Base.extend(/** @lends Segment# */{
* @see Path#isLinear() * @see Path#isLinear()
*/ */
isLinear: function() { isLinear: function() {
var next = this.getNext(), return Segment.isLinear(this, this.getNext());
l = next._point.subtract(this._point);
return l.isCollinear(this._handleOut) && l.isCollinear(next._handleIn);
}, },
/** /**
@ -276,12 +274,8 @@ var Segment = Base.extend(/** @lends Segment# */{
* @see Curve#isCollinear(curve) * @see Curve#isCollinear(curve)
*/ */
isCollinear: function(segment) { isCollinear: function(segment) {
var next1 = this.getNext(), return Segment.isCollinear(this, this.getNext(),
next2 = segment.getNext(); segment, segment.getNext());
return this._handleOut.isZero() && next1._handleIn.isZero()
&& segment._handleOut.isZero() && next2._handleIn.isZero()
&& next1._point.subtract(this._point).isCollinear(
next2._point.subtract(segment._point));
}, },
// TODO: Remove version with typo after a while (deprecated June 2015) // TODO: Remove version with typo after a while (deprecated June 2015)
@ -295,12 +289,7 @@ var Segment = Base.extend(/** @lends Segment# */{
* orthogonal} * orthogonal}
*/ */
isOrthogonal: function() { isOrthogonal: function() {
var prev = this.getPrevious(), return Segment.isOrthogonal(this.getPrevious(), this, this.getNext());
next = this.getNext();
return prev._handleOut.isZero() && this._handleIn.isZero()
&& this._handleOut.isZero() && next._handleIn.isZero()
&& this._point.subtract(prev._point).isOrthogonal(
next._point.subtract(this._point));
}, },
/** /**
@ -312,25 +301,7 @@ var Segment = Base.extend(/** @lends Segment# */{
* @see Curve#isOrthogonalArc() * @see Curve#isOrthogonalArc()
*/ */
isOrthogonalArc: function() { isOrthogonalArc: function() {
var next = this.getNext(), return Segment.isOrthogonalArc(this, this.getNext());
handle1 = this._handleOut,
handle2 = next._handleIn,
kappa = /*#=*/Numerical.KAPPA;
// Look at the length of the handles and their relation to the distance
// to the imaginary corner point and see if it their relation is kappa.
if (handle1.isOrthogonal(handle2)) {
var from = this._point,
to = next._point,
// Find the corner point by intersecting the lines described
// by both handles:
corner = new Line(from, handle1, true).intersect(
new Line(to, handle2, true), true);
return corner && Numerical.isZero(handle1.getLength() /
corner.subtract(from).getLength() - kappa)
&& Numerical.isZero(handle2.getLength() /
corner.subtract(to).getLength() - kappa);
}
return false;
}, },
// TODO: Remove a while (deprecated August 2015) // TODO: Remove a while (deprecated August 2015)
@ -590,5 +561,51 @@ var Segment = Base.extend(/** @lends Segment# */{
} }
} }
return coords; return coords;
},
statics: {
// These statics are shared between Segment and Curve, for versions of
// these methods that are implemented in both places.
isLinear: function(seg1, seg2) {
var l = seg2._point.subtract(seg1._point);
return l.isCollinear(seg1._handleOut)
&& l.isCollinear(seg2._handleIn);
},
isCollinear: function(seg1, seg2, seg3, seg4) {
return seg1._handleOut.isZero() && seg2._handleIn.isZero()
&& seg3._handleOut.isZero() && seg4._handleIn.isZero()
&& seg2._point.subtract(seg1._point).isCollinear(
seg4._point.subtract(seg3._point));
},
isOrthogonal: function(seg1, seg2, seg3) {
return seg1._handleOut.isZero() && seg2._handleIn.isZero()
&& seg2._handleOut.isZero() && seg3._handleIn.isZero()
&& seg2._point.subtract(seg1._point).isOrthogonal(
seg3._point.subtract(seg2._point));
},
isOrthogonalArc: function(seg1, seg2) {
var handle1 = seg1._handleOut,
handle2 = seg2._handleIn,
kappa = /*#=*/Numerical.KAPPA;
// Look at handle length and the distance to the imaginary corner
// point and see if it their relation is kappa.
if (handle1.isOrthogonal(handle2)) {
var pt1 = seg1._point,
pt2 = seg2._point,
// Find the corner point by intersecting the lines described
// by both handles:
corner = new Line(pt1, handle1, true).intersect(
new Line(pt2, handle2, true), true);
return corner && Numerical.isZero(handle1.getLength() /
corner.subtract(pt1).getLength() - kappa)
&& Numerical.isZero(handle2.getLength() /
corner.subtract(pt2).getLength() - kappa);
}
return false;
},
} }
}); });