Calculate abscissae directly

This commit is contained in:
hkrish 2013-05-14 23:36:44 +02:00
parent 0a9a0bdb9b
commit 48e5d3aa8e

View file

@ -196,34 +196,33 @@ function _clipBezierFatLine( v1, v2, v2t ){
if( dmin > maxdist || dmax < mindist ){
return 0;
}
var tmp;
if( dq3 < dq0 ){
var tmp = dmin;
dmin = dmax;
dmax = tmp;
tmp = dmin; dmin = dmax; dmax = tmp;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
var tmaxdmin = -Infinity, ixd, ixdx, i, len;
var tmin = Infinity, tmax = -Infinity;
// var dmina = [0, dmin, 2, dmin];
// var dmaxa = [0, dmax, 2, dmax];
var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m;
var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2;
for (i = 0, len = Dt.length; i < len; i++) {
var Dtl = Dt[i];
// ixd = _intersectLines( Dtl, dmina);
// TODO: Optimize: Avaoid creating point objects in Line.intersect?! - speeds up by 30%!
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmin, 2, dmin, false);
if( ixd ){
ixdx = ixd[0];
Dtl = Dt[i];
dtlx1 = Dtl[0]; dtly1 = Dtl[1]; dtlx2 = Dtl[2]; dtly2 = Dtl[3];
if( dtly2 < dtly1 ){
tmp = dtly2; dtly2 = dtly1; dtly1 = tmp;
tmp = dtlx2; dtlx2 = dtlx1; dtlx1 = tmp;
}
// we know that (dtlx2 - dtlx1) is never 0
inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1);
if( dmin >= dtly1 && dmin <= dtly2 ){
ixdx = dtlx1 + (dmin - dtly1) / inv_m;
if ( ixdx < tmin ) tmin = ixdx;
if ( ixdx > tmaxdmin ) tmaxdmin = ixdx;
}
// ixd = _intersectLines( Dtl, dmaxa);
ixd = Line.intersectRaw( Dtl[0], Dtl[1], Dtl[2], Dtl[3], 0, dmax, 2, dmax, false);
if( ixd ){
ixdx = ixd[0];
if( dmax >= dtly1 && dmax <= dtly2 ){
ixdx = dtlx1 + (dmax - dtly1) / inv_m;
if( ixdx > tmax ) tmax = ixdx;
if( ixdx < tmin ) tmin = 0;
}
@ -233,7 +232,7 @@ function _clipBezierFatLine( v1, v2, v2t ){
if(tmin === Infinity || tmax === -Infinity){
return -1;
}
if( tmaxdmin > tmax ) tmax = 1;
if( tmaxdmin > tmax ){ tmax = 1; }
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
// tmin and tmax are within the range (0, 1). We need to project it to the original