mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-20 22:39:50 -05:00
New _getWinding method in Curve. This method return the winding contribution of this curve w.r.t. the resulting PathItem
This commit is contained in:
parent
0134596f66
commit
39c52f326e
1 changed files with 20 additions and 135 deletions
|
@ -444,6 +444,26 @@ var Curve = Base.extend(/** @lends Curve# */{
|
|||
return '{ ' + parts.join(', ') + ' }';
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns the winding contribution of this curve, to the parent path or
|
||||
* CompoundPath it is part of.
|
||||
*/
|
||||
_getWinding: function() {
|
||||
var path = this.getPath();
|
||||
if (!path)
|
||||
// If this curve is not part of a path,
|
||||
// the 'insideness' contribution of this curve is undefined.
|
||||
return null;
|
||||
var v = this.getValues(),
|
||||
point = Curve.evaluate(v, 0.5, 0),
|
||||
xDirection = path.isClockwise() ? v[0] > v[6] : v[0] < v[6],
|
||||
isHorizontal = this.isLinear() && xDirection &&
|
||||
Math.abs(v[1]-v[7]) < /*#=*/ Numerical.TOLERANCE;
|
||||
// Call the parent's _getWinding method
|
||||
return (path._parent instanceof CompoundPath ? path._parent
|
||||
: path)._getWinding(point, isHorizontal);
|
||||
},
|
||||
|
||||
// Mess with indentation in order to get more line-space below...
|
||||
statics: {
|
||||
getValues: function(segment1, segment2, matrix) {
|
||||
|
@ -694,141 +714,6 @@ statics: {
|
|||
+ t * t * t * v3,
|
||||
padding);
|
||||
}
|
||||
},
|
||||
|
||||
_getWinding: function(v, prev, x, y, roots1, roots2) {
|
||||
// Implementation of the crossing number algorithm:
|
||||
// http://en.wikipedia.org/wiki/Point_in_polygon
|
||||
// Solve the y-axis cubic polynomial for y and count all solutions
|
||||
// to the right of x as crossings.
|
||||
var tolerance = /*#=*/ Numerical.TOLERANCE,
|
||||
abs = Math.abs;
|
||||
|
||||
// Looks at the curve's start and end y coordinates to determine
|
||||
// orientation. This only makes sense for curves with clear orientation,
|
||||
// which is why we need to split them at y extrema, see below.
|
||||
// Returns 0 if the curve is outside the boundaries and is not to be
|
||||
// considered.
|
||||
function getDirection(v) {
|
||||
var y0 = v[1],
|
||||
y1 = v[7],
|
||||
dir = y0 > y1 ? -1 : 1;
|
||||
// Bounds check: Reverse y0 and y1 if direction is -1.
|
||||
// Include end points, so we can handle them depending on different
|
||||
// edge cases.
|
||||
return dir === 1 && (y < y0 || y > y1)
|
||||
|| dir === -1 && (y < y1 || y > y0)
|
||||
? 0
|
||||
: dir;
|
||||
}
|
||||
|
||||
if (Curve.isLinear(v)) {
|
||||
// Special simplified case for handling lines.
|
||||
var dir = getDirection(v);
|
||||
if (!dir)
|
||||
return 0;
|
||||
var cross = (v[6] - v[0]) * (y - v[1]) - (v[7] - v[1]) * (x - v[0]);
|
||||
return (cross < -tolerance ? -1 : 1) == dir ? 0 : dir;
|
||||
}
|
||||
|
||||
// Handle bezier curves. We need to chop them into smaller curves with
|
||||
// defined orientation, by solving the derrivative curve for Y extrema.
|
||||
var y0 = v[1],
|
||||
y1 = v[3],
|
||||
y2 = v[5],
|
||||
y3 = v[7];
|
||||
// Split the curve at y extrema, to get bezier curves with clear
|
||||
// orientation: Calculate the derivative and find its roots.
|
||||
var a = 3 * (y1 - y2) - y0 + y3,
|
||||
b = 2 * (y0 + y2) - 4 * y1,
|
||||
c = y1 - y0;
|
||||
// Keep then range to 0 .. 1 (excluding) in the search for y extrema
|
||||
var count = Numerical.solveQuadratic(a, b, c, roots1, tolerance,
|
||||
1 - tolerance),
|
||||
part, // The part of the curve that's chopped off.
|
||||
rest = v, // The part that's left to be chopped.
|
||||
t1 = roots1[0], // The first root
|
||||
winding = 0;
|
||||
for (var i = 0; i <= count; i++) {
|
||||
if (i === count) {
|
||||
part = rest;
|
||||
} else {
|
||||
// Divide the curve at t1.
|
||||
var curves = Curve.subdivide(rest, t1);
|
||||
part = curves[0];
|
||||
rest = curves[1];
|
||||
t1 = roots1[i];
|
||||
// TODO: Watch for divide by 0
|
||||
// Now renormalize t1 to the range of the next iteration.
|
||||
t1 = (roots1[i + 1] - t1) / (1 - t1);
|
||||
}
|
||||
// Make sure that the connecting y extrema are flat
|
||||
if (i > 0)
|
||||
part[3] = part[1]; // curve2.handle1.y = curve2.point1.y;
|
||||
if (i < count)
|
||||
part[5] = rest[1]; // curve1.handle2.y = curve2.point1.y;
|
||||
var dir = getDirection(part);
|
||||
if (!dir)
|
||||
continue;
|
||||
// Adjust start and end range depending on if curve was flipped.
|
||||
// In normal orientation we exclude the end point since it's also
|
||||
// the start point of the next curve. If flipped, we have to exclude
|
||||
// the end point instead.
|
||||
var t2,
|
||||
px;
|
||||
// Since we've split at y extrema, there can only be 0, 1, or
|
||||
// infinite solutions now.
|
||||
if (Curve.solveCubic(part, 1, y, roots2, -tolerance, 1 + -tolerance)
|
||||
=== 1) {
|
||||
t2 = roots2[0];
|
||||
px = Curve.evaluate(part, t2, 0).x;
|
||||
} else {
|
||||
var mid = (part[1] + part[7]) / 2;
|
||||
// Pick t2 based on the direction of the curve. If y < mid,
|
||||
// choose the beginning (which is the end of a curve with
|
||||
// negative orientation, as we're not actually flipping curves).
|
||||
t2 = y < mid && dir > 0 ? 0 : 1;
|
||||
// Filter out the end point, as it'll be the start point of the
|
||||
// next curve.
|
||||
if (t2 === 1 && y == part[7])
|
||||
continue;
|
||||
px = t2 === 0 ? part[0] : part[6];
|
||||
}
|
||||
// See if we're touching a horizontal stationary point by looking at
|
||||
// the tanget's y coordinate. There are two cases 0:
|
||||
// A) The slope is 0, meaning we're touching a stationary
|
||||
// point inside the curve.
|
||||
// B) t2 == 0 and the slope changes between the current and the
|
||||
// previous curve.
|
||||
var slope = Curve.evaluate(part, t2, 1).y,
|
||||
stationary = abs(slope) < tolerance || t2 < tolerance
|
||||
&& Curve.evaluate(prev, 1, 1).y * slope < 0;
|
||||
// Calculate compare tolerance based on curve orientation (dir), to
|
||||
// add a bit of tolerance when considering points lying on the curve
|
||||
// as inside. But if we're touching a horizontal stationary point,
|
||||
// set compare tolerance to -tolerance, since we don't want to step
|
||||
// side-ways in tolerance based on orientation. This is needed e.g.
|
||||
// when touching the bottom tip of a circle.
|
||||
// Pass 1 for Curve.evaluate() type to calculate tangent
|
||||
if (x >= px + (stationary ? -tolerance : tolerance * dir)
|
||||
// When touching a stationary point, only count it if we're
|
||||
// actuall on it.
|
||||
&& !(stationary && (abs(t2) < tolerance
|
||||
&& abs(x - part[0]) > tolerance
|
||||
|| abs(t2 - 1) < tolerance
|
||||
&& abs(x - part[6]) > tolerance))) {
|
||||
// If this is a horizontal stationary point, and we're at the
|
||||
// end of the curve (or at the beginning of a curve with
|
||||
// negative direction, as we're not actually flipping them),
|
||||
// flip dir, as the curve is about to change orientation.
|
||||
winding += stationary && abs(t2 - (dir > 0 ? 1 : 0)) < tolerance
|
||||
? -dir : dir;
|
||||
}
|
||||
// Point the previous curve to the newly split part, so stationary
|
||||
// points are correctly detected.
|
||||
prev = part;
|
||||
}
|
||||
return winding;
|
||||
}
|
||||
}}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
|
||||
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
|
||||
|
|
Loading…
Reference in a new issue