Move curvature calculations into Curve.evaluate(), and define unit tests for it.

This commit is contained in:
Jürg Lehni 2013-06-18 19:00:05 -07:00
parent 619a8f88f8
commit 258c404b98
2 changed files with 38 additions and 57 deletions

View file

@ -444,14 +444,14 @@ statics: {
cy = 3 * (c1y - p1y), cy = 3 * (c1y - p1y),
by = 3 * (c2y - c1y) - cy, by = 3 * (c2y - c1y) - cy,
ay = p2y - p1y - cy - by; ay = p2y - p1y - cy - by;
switch (type) { if (type === 0) {
case 0: // point
// Calculate the curve point at parameter value t // Calculate the curve point at parameter value t
x = ((ax * t + bx) * t + cx) * t + p1x; x = ((ax * t + bx) * t + cx) * t + p1x;
y = ((ay * t + by) * t + cy) * t + p1y; y = ((ay * t + by) * t + cy) * t + p1y;
break; } else {
case 1: // tangent, 1st derivative // 1: tangent, 1st derivative
case 2: // normal, 1st derivative // 2: normal, 1st derivative
// 3: curvature, 1st derivative & 2nd derivative
// Prevent tangents and normals of length 0: // Prevent tangents and normals of length 0:
// http://stackoverflow.com/questions/10506868/ // http://stackoverflow.com/questions/10506868/
var tMin = /*#=*/ Numerical.TOLERANCE; var tMin = /*#=*/ Numerical.TOLERANCE;
@ -465,11 +465,14 @@ statics: {
x = (3 * ax * t + 2 * bx) * t + cx; x = (3 * ax * t + 2 * bx) * t + cx;
y = (3 * ay * t + 2 * by) * t + cy; y = (3 * ay * t + 2 * by) * t + cy;
} }
break; if (type === 3) {
case 3: // 2nd derivative // Calculate 2nd derivative, and curvature from there:
x = 6 * ax * t + 2 * bx; // http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
y = 6 * ay * t + 2 * by; // k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
break; var x2 = 6 * ax * t + 2 * bx,
y2 = 6 * ay * t + 2 * by;
return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2);
}
} }
} }
// The normal is simply the rotated tangent: // The normal is simply the rotated tangent:
@ -771,7 +774,7 @@ statics: {
* @bean * @bean
* @ignore * @ignore
*/ */
}), Base.each(['getPoint', 'getTangent', 'getNormal'], }), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvatureAt'],
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2 // determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without // values Curve.getBounds() can be used directly on curve arrays, without
@ -788,52 +791,6 @@ statics: {
}; };
}, },
/** @lends Curve# */{ /** @lends Curve# */{
/**
* Calculate the curvature at the specified offset on the path.
* Curvature indicates how sharply it curves. A straight line has zero
* curvature where as a circle has a constant curvature.
*
* Curvature at a point, by definition, is a scalar value equal to
* the reciprocal of the 'osculating circle' at that point on the path.
*
* Reference:
* http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
*
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Number} Curvatue of the curve at specified offset
*/
getCurvatureAt: function(offset, isParameter) {
var values = this.getValues();
if (offset === 0
|| isParameter ? offset === 1 : offset === this.getLength()) {
// We're at an end point:
// k = (2/3) * h / a^2
var line, point;
if (offset === 0) {
line = new Line(values[0], values[1], values[2], values[3]);
point = new Point(values[4], values[5]);
} else {
line = new Line(values[6], values[7], values[4], values[5]);
point = new Point(values[2], values[3]);
}
var a = line.getLength(),
h = line.getDistance(point);
return 2 * h / (3 * a * a);
} else {
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
// First derivative at offset/parameter
var dt = Curve.evaluate(values, offset, isParameter, 1),
// Second derivative at offset/parameter
d2t = Curve.evaluate(values, offset, isParameter, 3),
dx = dt.x,
dy = dt.y;
return (dx * d2t.y - dy * d2t.x) / Math.pow(dx * dx + dy * dy, 3 / 2);
}
},
/** /**
* Calculates the curve time parameter of the specified offset on the path, * Calculates the curve time parameter of the specified offset on the path,
* relative to the provided start parameter. If offset is a negative value, * relative to the provided start parameter. If offset is a negative value,
@ -963,6 +920,8 @@ statics: {
/** /**
* Returns the curvature vector of the curve at the specified position. * Returns the curvature vector of the curve at the specified position.
* Curvatures indicate how sharply a curve changes direction. A straight
* line has zero curvature where as a circle has a constant curvature.
* *
* @name Curve#getCurvatureAt * @name Curve#getCurvatureAt
* @function * @function

View file

@ -95,3 +95,25 @@ test('Curve#getCurvatureAt()', function() {
'curve.getCurvatureAt(' + entry[0] + ', true);'); 'curve.getCurvatureAt(' + entry[0] + ', true);');
} }
}); });
test('Curve#getCurvatureAt()', function() {
var curve = new Path.Line({
from: [100, 100],
to: [200, 200],
}).getFirstCurve();
var curvatures = [
[0, 0],
[0.25, 0],
[0.5, 0],
[0.75, 0],
[1, 0]
];
for (var i = 0; i < curvatures.length; i++) {
var entry = curvatures[i];
compareNumbers(curve.getCurvatureAt(entry[0], true), entry[1],
'curve.getCurvatureAt(' + entry[0] + ', true);');
}
});