mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-01 02:38:43 -05:00
Remove handling of converged fat-line, as it causes issues.
Example 23 in #784 was caused by this, and the code's removal has not produced any new issues, while it solved 6 issues in @iconexperience's test suite. Closes #795
This commit is contained in:
parent
93cacffd06
commit
1f03b00f99
1 changed files with 25 additions and 33 deletions
|
@ -1450,39 +1450,31 @@ new function() { // Scope for intersection using bezier fat-line clipping
|
|||
dMax = factor * Math.max(0, d1, d2),
|
||||
tMinNew, tMaxNew,
|
||||
tDiff;
|
||||
if (q0x === q3x && uMax - uMin < epsilon && recursion >= 3) {
|
||||
// The fat-line of Q has converged to a point, the clipping is not
|
||||
// reliable. Return the value we have even though we will miss the
|
||||
// precision.
|
||||
tMaxNew = tMinNew = (tMax + tMin) / 2;
|
||||
tDiff = 0;
|
||||
} else {
|
||||
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
|
||||
// distance of P from the baseline l of the fat-line, ti is equally
|
||||
// spaced in [0, 1]
|
||||
var dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]),
|
||||
dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]),
|
||||
dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]),
|
||||
dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]),
|
||||
// Get the top and bottom parts of the convex-hull
|
||||
hull = getConvexHull(dp0, dp1, dp2, dp3),
|
||||
top = hull[0],
|
||||
bottom = hull[1],
|
||||
tMinClip, tMaxClip;
|
||||
// Clip the convex-hull with dMin and dMax, taking into account that
|
||||
// there will be no intersections if one of the tvalues are null.
|
||||
if ((tMinClip = clipConvexHull(top, bottom, dMin, dMax)) == null ||
|
||||
(tMaxClip = clipConvexHull(top.reverse(), bottom.reverse(),
|
||||
dMin, dMax)) == null)
|
||||
return;
|
||||
// Clip P with the fat-line for Q
|
||||
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
|
||||
tDiff = tMaxClip - tMinClip;
|
||||
// tMin and tMax are within the range (0, 1). We need to project it
|
||||
// to the original parameter range for v2.
|
||||
tMinNew = tMax * tMinClip + tMin * (1 - tMinClip);
|
||||
tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip);
|
||||
}
|
||||
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
|
||||
// distance of P from the baseline l of the fat-line, ti is equally
|
||||
// spaced in [0, 1]
|
||||
var dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]),
|
||||
dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]),
|
||||
dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]),
|
||||
dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]),
|
||||
// Get the top and bottom parts of the convex-hull
|
||||
hull = getConvexHull(dp0, dp1, dp2, dp3),
|
||||
top = hull[0],
|
||||
bottom = hull[1],
|
||||
tMinClip, tMaxClip;
|
||||
// Clip the convex-hull with dMin and dMax, taking into account that
|
||||
// there will be no intersections if one of the tvalues are null.
|
||||
if ((tMinClip = clipConvexHull(top, bottom, dMin, dMax)) == null ||
|
||||
(tMaxClip = clipConvexHull(top.reverse(), bottom.reverse(),
|
||||
dMin, dMax)) == null)
|
||||
return;
|
||||
// Clip P with the fat-line for Q
|
||||
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
|
||||
tDiff = tMaxClip - tMinClip;
|
||||
// tMin and tMax are within the range (0, 1). We need to project it to
|
||||
// the original parameter range for v2.
|
||||
tMinNew = tMax * tMinClip + tMin * (1 - tMinClip);
|
||||
tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip);
|
||||
// Check if we need to subdivide the curves
|
||||
if (oldTDiff > 0.5 && tDiff > 0.5) {
|
||||
// Subdivide the curve which has converged the least.
|
||||
|
|
Loading…
Reference in a new issue