mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-07 13:22:07 -05:00
Improve precision of Numerical.solveCubic() and fix issues in Curve.getCrossings().
Closes #202.
This commit is contained in:
parent
461def5383
commit
14aa8e5dea
2 changed files with 71 additions and 41 deletions
|
@ -264,29 +264,50 @@ var Curve = this.Curve = Base.extend(/** @lends Curve# */{
|
||||||
},
|
},
|
||||||
|
|
||||||
getCrossings: function(point, roots) {
|
getCrossings: function(point, roots) {
|
||||||
// Implement the crossing number algorithm:
|
// Implementation of the crossing number algorithm:
|
||||||
// http://en.wikipedia.org/wiki/Point_in_polygon
|
// http://en.wikipedia.org/wiki/Point_in_polygon
|
||||||
// Solve the y-axis cubic polynomial for point.y and count all solutions
|
// Solve the y-axis cubic polynomial for point.y and count all solutions
|
||||||
// to the right of point.x as crossings.
|
// to the right of point.x as crossings.
|
||||||
var vals = this.getValues(),
|
var vals = this.getValues(),
|
||||||
count = Curve.solveCubic(vals, 1, point.y, roots),
|
count = Curve.solveCubic(vals, 1, point.y, roots),
|
||||||
crossings = 0;
|
crossings = 0,
|
||||||
|
tolerance = /*#=*/ Numerical.TOLERANCE;
|
||||||
for (var i = 0; i < count; i++) {
|
for (var i = 0; i < count; i++) {
|
||||||
var t = roots[i];
|
var t = roots[i];
|
||||||
if (t >= 0 && t < 1 && Curve.evaluate(vals, t, true, 0).x > point.x) {
|
if (t >= -tolerance && t < 1 - tolerance) {
|
||||||
// If we're close to 0 and are not changing y-direction from the
|
var pt = Curve.evaluate(vals, t, true, 0);
|
||||||
// previous curve, do not count this root, as we're merely
|
/*#*/ if (options.debug) {
|
||||||
// touching a tip. Passing 1 for Curve.evaluate()'s type means
|
console.log(t, point.y, pt.y);
|
||||||
// we're calculating tangents, and then check their y-slope for
|
new Path.Circle({
|
||||||
// a change of direction:
|
center: Curve.evaluate(vals, t, true, 0),
|
||||||
if (t < /*#=*/ Numerical.TOLERANCE
|
radius: 2,
|
||||||
&& Curve.evaluate(this.getPrevious().getValues(), 1, true, 1).y
|
strokeColor: 'red',
|
||||||
* Curve.evaluate(vals, t, true, 1).y
|
strokeWidth: 0.25
|
||||||
>= /*#=*/ Numerical.TOLERANCE)
|
});
|
||||||
|
/*#*/ }
|
||||||
|
if (pt.x >= point.x - tolerance) {
|
||||||
|
// Passing 1 for Curve.evaluate()'s type calculates tangents.
|
||||||
|
var tangent = Curve.evaluate(vals, t, true, 1);
|
||||||
|
if (
|
||||||
|
// Skip touching stationary points (tips), but if the
|
||||||
|
// actual point is on one, do not skip this solution!
|
||||||
|
Math.abs(pt.x - point.x) > tolerance
|
||||||
|
&& (
|
||||||
|
// Check derivate for stationary points
|
||||||
|
Math.abs(tangent.y) < tolerance
|
||||||
|
// If root is close to 0 and not changing vertical
|
||||||
|
// orientation from the previous curve, do not count
|
||||||
|
// this root, as it's touching a corner.
|
||||||
|
|| t < tolerance
|
||||||
|
// Check the y-slope for a change of orientation
|
||||||
|
&& tangent.y * Curve.evaluate(
|
||||||
|
this.getPrevious().getValues(), 1, true, 1).y
|
||||||
|
< tolerance))
|
||||||
continue;
|
continue;
|
||||||
crossings++;
|
crossings++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
return crossings;
|
return crossings;
|
||||||
},
|
},
|
||||||
|
|
||||||
|
@ -513,7 +534,7 @@ statics: {
|
||||||
b = 3 * (c2 - c1) - c,
|
b = 3 * (c2 - c1) - c,
|
||||||
a = p2 - p1 - c - b;
|
a = p2 - p1 - c - b;
|
||||||
return Numerical.solveCubic(a, b, c, p1 - val, roots,
|
return Numerical.solveCubic(a, b, c, p1 - val, roots,
|
||||||
/*#=*/ Numerical.TOLERANCE);
|
/*#=*/ Numerical.EPSILON);
|
||||||
},
|
},
|
||||||
|
|
||||||
getParameterOf: function(v, x, y) {
|
getParameterOf: function(v, x, y) {
|
||||||
|
@ -646,11 +667,13 @@ statics: {
|
||||||
var bounds1 = Curve.getBounds(v1),
|
var bounds1 = Curve.getBounds(v1),
|
||||||
bounds2 = Curve.getBounds(v2);
|
bounds2 = Curve.getBounds(v2);
|
||||||
/*#*/ if (options.debug) {
|
/*#*/ if (options.debug) {
|
||||||
new Path.Rectangle(bounds1).set({
|
new Path.Rectangle({
|
||||||
|
rectangle: bounds1,
|
||||||
strokeColor: 'green',
|
strokeColor: 'green',
|
||||||
strokeWidth: 0.1
|
strokeWidth: 0.1
|
||||||
});
|
});
|
||||||
new Path.Rectangle(bounds2).set({
|
new Path.Rectangle({
|
||||||
|
rectangle: bounds2,
|
||||||
strokeColor: 'red',
|
strokeColor: 'red',
|
||||||
strokeWidth: 0.1
|
strokeWidth: 0.1
|
||||||
});
|
});
|
||||||
|
@ -660,11 +683,15 @@ statics: {
|
||||||
if (Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE)
|
if (Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE)
|
||||||
&& Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE)) {
|
&& Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE)) {
|
||||||
/*#*/ if (options.debug) {
|
/*#*/ if (options.debug) {
|
||||||
new Path.Line(v1[0], v1[1], v1[6], v1[7]).set({
|
new Path.Line({
|
||||||
|
from: [v1[0], v1[1]],
|
||||||
|
to: [v1[6], v1[7]],
|
||||||
strokeColor: 'green',
|
strokeColor: 'green',
|
||||||
strokeWidth: 0.1
|
strokeWidth: 0.1
|
||||||
});
|
});
|
||||||
new Path.Line(v2[0], v2[1], v2[6], v2[7]).set({
|
new Path.Line({
|
||||||
|
from: [v2[0], v2[1]],
|
||||||
|
to: [v2[6], v2[7]],
|
||||||
strokeColor: 'red',
|
strokeColor: 'red',
|
||||||
strokeWidth: 0.1
|
strokeWidth: 0.1
|
||||||
});
|
});
|
||||||
|
|
|
@ -171,11 +171,11 @@ var Numerical = this.Numerical = new function() {
|
||||||
d /= a;
|
d /= a;
|
||||||
// Compute discriminants
|
// Compute discriminants
|
||||||
var bb = b * b,
|
var bb = b * b,
|
||||||
p = 1 / 3 * (-1 / 3 * bb + c),
|
p = (bb - 3 * c) / 9,
|
||||||
q = 1 / 2 * (2 / 27 * b * bb - 1 / 3 * b * c + d),
|
q = (2 * bb * b - 9 * b * c + 27 * d) / 54,
|
||||||
// Use Cardano's formula
|
// Use Cardano's formula
|
||||||
ppp = p * p * p,
|
ppp = p * p * p,
|
||||||
D = q * q + ppp;
|
D = q * q - ppp;
|
||||||
// Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0
|
// Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0
|
||||||
b /= 3;
|
b /= 3;
|
||||||
if (abs(D) < tolerance) {
|
if (abs(D) < tolerance) {
|
||||||
|
@ -183,23 +183,26 @@ var Numerical = this.Numerical = new function() {
|
||||||
roots[0] = - b;
|
roots[0] = - b;
|
||||||
return 1;
|
return 1;
|
||||||
} else { // One single and one double solution.
|
} else { // One single and one double solution.
|
||||||
var u = cbrt(-q);
|
var sqp = sqrt(p),
|
||||||
roots[0] = 2 * u - b;
|
snq = q < 0 ? -1 : 1;
|
||||||
roots[1] = - u - b;
|
roots[0] = -snq * 2 * sqp - b;
|
||||||
|
roots[1] = snq * sqp - b;
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
} else if (D < 0) { // Casus irreducibilis: three real solutions
|
} else if (D < 0) { // Casus irreducibilis: three real solutions
|
||||||
var phi = 1 / 3 * Math.acos(-q / sqrt(-ppp));
|
var sqp = sqrt(p),
|
||||||
var t = 2 * sqrt(-p);
|
phi = Math.acos(q / (sqp * sqp * sqp)) / 3,
|
||||||
|
o = 2 * PI / 3,
|
||||||
|
t = -2 * sqp;
|
||||||
roots[0] = t * cos(phi) - b;
|
roots[0] = t * cos(phi) - b;
|
||||||
roots[1] = - t * cos(phi + PI / 3) - b;
|
roots[1] = t * cos(phi + o) - b;
|
||||||
roots[2] = - t * cos(phi - PI / 3) - b;
|
roots[2] = t * cos(phi - o) - b;
|
||||||
return 3;
|
return 3;
|
||||||
} else { // One real solution
|
|
||||||
D = sqrt(D);
|
|
||||||
roots[0] = cbrt(D - q) - cbrt(D + q) - b;
|
|
||||||
return 1;
|
|
||||||
}
|
}
|
||||||
|
// One real solution
|
||||||
|
var sqD = sqrt(D);
|
||||||
|
roots[0] = cbrt(sqD - q) - cbrt(sqD + q) - b;
|
||||||
|
return 1;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
Loading…
Reference in a new issue