Start cleaning up code from #773

- Use Line object isntead of static methods
- Do not rely on Math.sign() as it's not supported on all browsers
- Wrap lines at 80 char width.
This commit is contained in:
Jürg Lehni 2015-09-30 13:07:55 -05:00
parent 2a7d1c5728
commit 1231153553
2 changed files with 81 additions and 67 deletions

View file

@ -417,16 +417,16 @@ var Curve = Base.extend(/** @lends Curve# */{
* Returns all intersections between two {@link Curve} objects as an array
* of {@link CurveLocation} objects.
*
* If the parameter curve is null, the self intersection of the curve is
* returned, if it exists.
*
* @param {Curve} curve the other curve to find the intersections with
* @return {CurveLocation[]} the locations of all intersection between the
* @param {Curve} curve the other curve to find the intersections with (if
* the curve itself or {@code null} is passed, the self intersection of the
* curve is returned, if it exists)
* @return {CurveLocation[]} the locations of all intersections between the
* curves
*/
getIntersections: function(curve) {
return Curve.getIntersections(this.getValues(), curve ? curve.getValues() : null,
this, curve ? curve : this, [], {});
return Curve.getIntersections(this.getValues(),
curve && curve !== this ? curve.getValues() : null,
this, curve, [], {});
},
// TODO: adjustThroughPoint
@ -1756,63 +1756,78 @@ new function() { // Scope for intersection using bezier fat-line clipping
}
return { statics: /** @lends Curve */{
// We need to provide the original left curve reference to the
// #getIntersections() calls as it is required to create the resulting
// CurveLocation objects.
getIntersections: function(v1, v2, c1, c2, locations, param) {
if (!v2) { // if v2 is null or undefined, search for self intersection
// get side of both handles
var h1Side = Line.getSide(v1[0], v1[1], v1[6], v1[7], v1[2], v1[3], false);
var h2Side = Line.getSide(v1[0], v1[1], v1[6], v1[7], v1[4], v1[5], false);
if (h1Side == h2Side) {
var edgeSum = (v1[0] - v1[4]) * (v1[3] - v1[7]) + (v1[2] - v1[6]) * (v1[5] - v1[1]);
// if both handles are on the same side, the curve can only have a self intersection if
// the edge sum and the handles's side have different signs. If the handles are on the
// left side, the edge sum must be negative for a self intersection (and vice versa)
if (Math.sign(edgeSum) == h1Side) return locations;
// If v2 is not provided, search for self intersection on v1.
if (!v2) {
// Get side of both handles
var line = new Line(v1[0], v1[1], v1[6], v1[7], false),
side1 = line.getSide(v1[2], v1[3]),
side2 = Line.getSide(v1[4], v1[5]);
if (side1 === side2) {
var edgeSum = (v1[0] - v1[4]) * (v1[3] - v1[7])
+ (v1[2] - v1[6]) * (v1[5] - v1[1]);
// If both handles are on the same side, the curve can only
// have a self intersection if the edge sum and the
// handles' sides have different signs. If the handles are
// on the left side, the edge sum must be negative for a
// self intersection (and vice-versa).
if (edgeSum * side1 > 0)
return locations;
}
// As a second condition we check if the curve has an inflection point. If an inflection point
// exists, the curve cannot have a self intersection.
var ax = v1[6] - 3 * v1[4] + 3 * v1[2] - v1[0];
var bx = v1[4] - 2 * v1[2] + v1[0];
var cx = v1[2] - v1[0];
var ay = v1[7] - 3 * v1[5] + 3 * v1[3] - v1[1];
var by = v1[5] - 2 * v1[3] + v1[1];
var cy = v1[3] - v1[1];
var hasInflectionPoint = (Math.pow(ay * cx - ax * cy, 2) - 4 * (ay * bx - ax * by) * (by * cx - bx * cy) >= 0);
if (!hasInflectionPoint) {
// the curve may have a self intersection, find parameter to split curve. We search for the
// parameter where the velocity has an extremum by finding the roots of the cross product
// between the bezier curve's first and second derivative
// As a second condition we check if the curve has an inflection
// point. If an inflection point exists, the curve cannot have a
// self intersection.
var ax = v1[6] - 3 * v1[4] + 3 * v1[2] - v1[0],
bx = v1[4] - 2 * v1[2] + v1[0],
cx = v1[2] - v1[0],
ay = v1[7] - 3 * v1[5] + 3 * v1[3] - v1[1],
by = v1[5] - 2 * v1[3] + v1[1],
cy = v1[3] - v1[1],
hasInflection = Math.pow(ay * cx - ax * cy, 2)
- 4 * (ay * bx - ax * by) * (by * cx - bx * cy) >= 0;
if (!hasInflection) {
// The curve may have a self intersection, find parameter to
// split curve. We search for the parameter where the
// velocity has an extremum by finding the roots of the
// cross product between the bezier curve's first and second
// derivative.
var roots = [],
rootCount = Numerical.solveCubic(ax * ax + ay * ay, 3 * (ax * bx + ay * by),
(2 * (bx * bx + by * by) + ax * cx + ay * cy), (bx * cx + by * cy), roots, 0, 1);
// Select extremum with smallest curvature. This is always on the loop in case of a self intersection
var tSplit, maxCurvature;
for (var i = 0; i < rootCount; i++) {
var curvature = Math.abs(c1.getCurvatureAt(roots[i], true));
if (!maxCurvature || curvature > maxCurvature) {
rootCount = Numerical.solveCubic(
ax * ax + ay * ay,
3 * (ax * bx + ay * by),
2 * (bx * bx + by * by) + ax * cx + ay * cy,
bx * cx + by * cy,
roots, 0, 1);
// Select extremum with smallest curvature. This is always
// on the loop in case of a self intersection.
var tSplit;
for (var i = 0, maxCurvature = 0; i < rootCount; i++) {
var curvature = Math.abs(
c1.getCurvatureAt(roots[i], true));
if (curvature > maxCurvature) {
maxCurvature = curvature;
tSplit = roots[i];
}
}
// Divide the curve in two and then apply the normal curve intersection code.
// Divide the curve in two and then apply the normal curve
// intersection code.
var parts = Curve.subdivide(v1, tSplit);
if (!param) param = {};
// After splitting, the end is always connected:
param.endConnected = true;
// Since the curve was split above, we need to
// adjust the parameters for both locations.
param.renormalize = function(t1, t2) {
return [t1 * tSplit, t2 * (1 - tSplit) + tSplit];
};
Curve.getIntersections(parts[0], parts[1], c1, c1, locations, param);
Curve.getIntersections(parts[0], parts[1], c1, c1, locations, {
startConnected: param.startConnected,
// After splitting, the end is always connected:
endConnected: true,
// Since the curve was split above, we need to
// adjust the parameters for both locations.
renormalize: function(t1, t2) {
return [t1 * tSplit, t2 * (1 - tSplit) + tSplit];
}
});
}
} else {
// Avoid checking curves if completely out of control bounds.
// As a little optimization, we can scale the handles with 0.75
// before calculating the control bounds and still be sure that the
// curve is fully contained.
// Avoid checking curves if completely out of control bounds. As
// a little optimization, we can scale the handles with 0.75
// before calculating the control bounds and still be sure that
// the curve is fully contained.
var c1p1x = v1[0], c1p1y = v1[1],
c1p2x = v1[6], c1p2y = v1[7],
c2p1x = v2[0], c2p1y = v2[1],
@ -1828,18 +1843,18 @@ new function() { // Scope for intersection using bezier fat-line clipping
min = Math.min,
max = Math.max;
if (!(
max(c1p1x, c1h1x, c1h2x, c1p2x) >=
min(c2p1x, c2h1x, c2h2x, c2p2x) &&
min(c1p1x, c1h1x, c1h2x, c1p2x) <=
max(c2p1x, c2h1x, c2h2x, c2p2x) &&
max(c1p1y, c1h1y, c1h2y, c1p2y) >=
min(c2p1y, c2h1y, c2h2y, c2p2y) &&
min(c1p1y, c1h1y, c1h2y, c1p2y) <=
max(c2p1y, c2h1y, c2h2y, c2p2y)
max(c1p1x, c1h1x, c1h2x, c1p2x) >=
min(c2p1x, c2h1x, c2h2x, c2p2x) &&
min(c1p1x, c1h1x, c1h2x, c1p2x) <=
max(c2p1x, c2h1x, c2h2x, c2p2x) &&
max(c1p1y, c1h1y, c1h2y, c1p2y) >=
min(c2p1y, c2h1y, c2h2y, c2p2y) &&
min(c1p1y, c1h1y, c1h2y, c1p2y) <=
max(c2p1y, c2h1y, c2h2y, c2p2y)
)
// Also detect and handle overlaps:
// Also detect and handle overlaps:
|| !param.startConnected && !param.endConnected
&& addOverlap(v1, v2, c1, c2, locations, param))
&& addOverlap(v1, v2, c1, c2, locations, param))
return locations;
var straight1 = Curve.isStraight(v1),
straight2 = Curve.isStraight(v2),

View file

@ -88,13 +88,12 @@ var PathItem = Item.extend(/** @lends PathItem# */{
values1 = self ? values2[i] : curve1.getValues(matrix1);
if (self) {
// First check for self-intersections within the same curve
var p1 = curve1.getSegment1()._point,
p2 = curve1.getSegment2()._point;
Curve.getIntersections(values1, null, curve1, curve1,
locations, {
include: include,
// Only possible if there is only one closed curve:
startConnected: length1 === 1 && p1.equals(p2)
startConnected: length1 === 1 &&
curve1.getPoint1().equals(curve1.getPoint2())
}
);
}