mirror of
https://github.com/scratchfoundation/paper.js.git
synced 2025-01-07 13:22:07 -05:00
Fatline clipping: remove old #curveIntersection method
This commit is contained in:
parent
2fa5e3d417
commit
0598afd77b
1 changed files with 32 additions and 117 deletions
|
@ -1145,125 +1145,10 @@ new function() { // Scope for methods that require numerical integration
|
|||
new CurveLocation(curve1, t1, point1, curve2, t2, point2));
|
||||
}
|
||||
|
||||
function addCurveIntersections_old(v1, v2, curve1, curve2, locations,
|
||||
range1, range2, recursion) {
|
||||
|
||||
/*#*/ if (__options.fatline) {
|
||||
// NOTE: range1 and range1 are only used for recusion
|
||||
recursion = (recursion || 0) + 1;
|
||||
// Avoid endless recursion.
|
||||
// Perhaps we should fall back to a more expensive method after this,
|
||||
// but so far endless recursion happens only when there is no real
|
||||
// intersection and the infinite fatline continue to intersect with the
|
||||
// other curve outside its bounds!
|
||||
if (recursion > 20)
|
||||
return;
|
||||
// Set up the parameter ranges.
|
||||
range1 = range1 || [ 0, 1 ];
|
||||
range2 = range2 || [ 0, 1 ];
|
||||
// Get the clipped parts from the original curve, to avoid cumulative
|
||||
// errors
|
||||
var part1 = Curve.getPart(v1, range1[0], range1[1]),
|
||||
part2 = Curve.getPart(v2, range2[0], range2[1]),
|
||||
iteration = 0;
|
||||
// Loop until both parameter range converge. We have to handle the
|
||||
// degenerate case seperately, where fat-line clipping can become
|
||||
// numerically unstable when one of the curves has converged to a point
|
||||
// and the other hasn't.
|
||||
while (iteration++ < 20) {
|
||||
// First we clip v2 with v1's fat-line
|
||||
var range,
|
||||
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
|
||||
intersects2 = 0;
|
||||
// Stop if there are no possible intersections
|
||||
if (intersects1 === 0)
|
||||
break;
|
||||
if (intersects1 > 0) {
|
||||
// Get the clipped parts from the original v2, to avoid
|
||||
// cumulative errors
|
||||
range2 = range;
|
||||
part2 = Curve.getPart(v2, range2[0], range2[1]);
|
||||
// Next we clip v1 with nuv2's fat-line
|
||||
intersects2 = clipFatLine(part2, part1, range = range1.slice());
|
||||
// Stop if there are no possible intersections
|
||||
if (intersects2 === 0)
|
||||
break;
|
||||
if (intersects1 > 0) {
|
||||
// Get the clipped parts from the original v2, to avoid
|
||||
// cumulative errors
|
||||
range1 = range;
|
||||
part1 = Curve.getPart(v1, range1[0], range1[1]);
|
||||
}
|
||||
}
|
||||
// Get the clipped parts from the original v1
|
||||
// Check if there could be multiple intersections
|
||||
if (intersects1 < 0 || intersects2 < 0) {
|
||||
// Subdivide the curve which has converged the least from the
|
||||
// original range [0,1], which would be the curve with the
|
||||
// largest parameter range after clipping
|
||||
if (range1[1] - range1[0] > range2[1] - range2[0]) {
|
||||
// subdivide v1 and recurse
|
||||
var t = (range1[0] + range1[1]) / 2;
|
||||
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
||||
[ range1[0], t ], range2, recursion);
|
||||
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
||||
[ t, range1[1] ], range2, recursion);
|
||||
break;
|
||||
} else {
|
||||
// subdivide v2 and recurse
|
||||
var t = (range2[0] + range2[1]) / 2;
|
||||
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
||||
range1, [ range2[0], t ], recursion);
|
||||
addCurveIntersections(v1, v2, curve1, curve2, locations,
|
||||
range1, [ t, range2[1] ], recursion);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// We need to bailout of clipping and try a numerically stable
|
||||
// method if both of the parameter ranges have converged reasonably
|
||||
// well (according to Numerical.TOLERANCE).
|
||||
if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE &&
|
||||
Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) {
|
||||
var t1 = (range1[0] + range1[1]) / 2,
|
||||
t2 = (range2[0] + range2[1]) / 2;
|
||||
addLocation(locations,
|
||||
curve1, t1, Curve.evaluate(v1, t1, 0),
|
||||
curve2, t2, Curve.evaluate(v2, t2, 0));
|
||||
break;
|
||||
}
|
||||
}
|
||||
/*#*/ } else { // !__options.fatline
|
||||
var bounds1 = Curve.getBounds(v1),
|
||||
bounds2 = Curve.getBounds(v2);
|
||||
if (bounds1.touches(bounds2)) {
|
||||
// See if both curves are flat enough to be treated as lines, either
|
||||
// because they have no control points at all, or are "flat enough"
|
||||
// If the curve was flat in a previous iteration, we don't need to
|
||||
// recalculate since it does not need further subdivision then.
|
||||
if ((Curve.isLinear(v1)
|
||||
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
|
||||
&& (Curve.isLinear(v2)
|
||||
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
|
||||
// See if the parametric equations of the lines interesct.
|
||||
addLineIntersection(v1, v2, curve1, curve2, locations);
|
||||
} else {
|
||||
// Subdivide both curves, and see if they intersect.
|
||||
// If one of the curves is flat already, no further subdivion
|
||||
// is required.
|
||||
var v1s = Curve.subdivide(v1),
|
||||
v2s = Curve.subdivide(v2);
|
||||
for (var i = 0; i < 2; i++)
|
||||
for (var j = 0; j < 2; j++)
|
||||
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
|
||||
locations);
|
||||
}
|
||||
}
|
||||
return locations;
|
||||
/*#*/ } // !__options.fatline
|
||||
}
|
||||
|
||||
function addCurveIntersections(v1, v2, curve1, curve2, locations,
|
||||
tmin, tmax, umin, umax, oldTdiff, reverse, recursion) {
|
||||
|
||||
/*#*/ if (__options.fatline) {
|
||||
if(recursion === undefined){
|
||||
recursion |= 0;
|
||||
tmin = tmin || 0; tmax = tmax || 1;
|
||||
|
@ -1343,6 +1228,36 @@ new function() { // Scope for methods that require numerical integration
|
|||
else // Iterate
|
||||
addCurveIntersections(v2, v1New, curve2, curve1, locations,
|
||||
umin, umax, tminNew, tmaxNew, tDiff, !reverse, recursion);
|
||||
|
||||
/*#*/ } else { // !__options.fatline
|
||||
// Subdivision method
|
||||
var bounds1 = Curve.getBounds(v1),
|
||||
bounds2 = Curve.getBounds(v2);
|
||||
if (bounds1.touches(bounds2)) {
|
||||
// See if both curves are flat enough to be treated as lines, either
|
||||
// because they have no control points at all, or are "flat enough"
|
||||
// If the curve was flat in a previous iteration, we don't need to
|
||||
// recalculate since it does not need further subdivision then.
|
||||
if ((Curve.isLinear(v1)
|
||||
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
|
||||
&& (Curve.isLinear(v2)
|
||||
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
|
||||
// See if the parametric equations of the lines interesct.
|
||||
addLineIntersection(v1, v2, curve1, curve2, locations);
|
||||
} else {
|
||||
// Subdivide both curves, and see if they intersect.
|
||||
// If one of the curves is flat already, no further subdivion
|
||||
// is required.
|
||||
var v1s = Curve.subdivide(v1),
|
||||
v2s = Curve.subdivide(v2);
|
||||
for (var i = 0; i < 2; i++)
|
||||
for (var j = 0; j < 2; j++)
|
||||
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
|
||||
locations);
|
||||
}
|
||||
}
|
||||
return locations;
|
||||
/*#*/ } // !__options.fatline
|
||||
}
|
||||
|
||||
/*#*/ if (__options.fatline) {
|
||||
|
|
Loading…
Reference in a new issue