Fatline clipping: remove old #curveIntersection method

This commit is contained in:
hkrish 2013-12-09 19:36:02 +01:00
parent 2fa5e3d417
commit 0598afd77b

View file

@ -1145,125 +1145,10 @@ new function() { // Scope for methods that require numerical integration
new CurveLocation(curve1, t1, point1, curve2, t2, point2)); new CurveLocation(curve1, t1, point1, curve2, t2, point2));
} }
function addCurveIntersections_old(v1, v2, curve1, curve2, locations,
range1, range2, recursion) {
/*#*/ if (__options.fatline) {
// NOTE: range1 and range1 are only used for recusion
recursion = (recursion || 0) + 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this,
// but so far endless recursion happens only when there is no real
// intersection and the infinite fatline continue to intersect with the
// other curve outside its bounds!
if (recursion > 20)
return;
// Set up the parameter ranges.
range1 = range1 || [ 0, 1 ];
range2 = range2 || [ 0, 1 ];
// Get the clipped parts from the original curve, to avoid cumulative
// errors
var part1 = Curve.getPart(v1, range1[0], range1[1]),
part2 = Curve.getPart(v2, range2[0], range2[1]),
iteration = 0;
// Loop until both parameter range converge. We have to handle the
// degenerate case seperately, where fat-line clipping can become
// numerically unstable when one of the curves has converged to a point
// and the other hasn't.
while (iteration++ < 20) {
// First we clip v2 with v1's fat-line
var range,
intersects1 = clipFatLine(part1, part2, range = range2.slice()),
intersects2 = 0;
// Stop if there are no possible intersections
if (intersects1 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
range2 = range;
part2 = Curve.getPart(v2, range2[0], range2[1]);
// Next we clip v1 with nuv2's fat-line
intersects2 = clipFatLine(part2, part1, range = range1.slice());
// Stop if there are no possible intersections
if (intersects2 === 0)
break;
if (intersects1 > 0) {
// Get the clipped parts from the original v2, to avoid
// cumulative errors
range1 = range;
part1 = Curve.getPart(v1, range1[0], range1[1]);
}
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if (intersects1 < 0 || intersects2 < 0) {
// Subdivide the curve which has converged the least from the
// original range [0,1], which would be the curve with the
// largest parameter range after clipping
if (range1[1] - range1[0] > range2[1] - range2[0]) {
// subdivide v1 and recurse
var t = (range1[0] + range1[1]) / 2;
addCurveIntersections(v1, v2, curve1, curve2, locations,
[ range1[0], t ], range2, recursion);
addCurveIntersections(v1, v2, curve1, curve2, locations,
[ t, range1[1] ], range2, recursion);
break;
} else {
// subdivide v2 and recurse
var t = (range2[0] + range2[1]) / 2;
addCurveIntersections(v1, v2, curve1, curve2, locations,
range1, [ range2[0], t ], recursion);
addCurveIntersections(v1, v2, curve1, curve2, locations,
range1, [ t, range2[1] ], recursion);
break;
}
}
// We need to bailout of clipping and try a numerically stable
// method if both of the parameter ranges have converged reasonably
// well (according to Numerical.TOLERANCE).
if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE &&
Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) {
var t1 = (range1[0] + range1[1]) / 2,
t2 = (range2[0] + range2[1]) / 2;
addLocation(locations,
curve1, t1, Curve.evaluate(v1, t1, 0),
curve2, t2, Curve.evaluate(v2, t2, 0));
break;
}
}
/*#*/ } else { // !__options.fatline
var bounds1 = Curve.getBounds(v1),
bounds2 = Curve.getBounds(v2);
if (bounds1.touches(bounds2)) {
// See if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if ((Curve.isLinear(v1)
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
&& (Curve.isLinear(v2)
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
// See if the parametric equations of the lines interesct.
addLineIntersection(v1, v2, curve1, curve2, locations);
} else {
// Subdivide both curves, and see if they intersect.
// If one of the curves is flat already, no further subdivion
// is required.
var v1s = Curve.subdivide(v1),
v2s = Curve.subdivide(v2);
for (var i = 0; i < 2; i++)
for (var j = 0; j < 2; j++)
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
locations);
}
}
return locations;
/*#*/ } // !__options.fatline
}
function addCurveIntersections(v1, v2, curve1, curve2, locations, function addCurveIntersections(v1, v2, curve1, curve2, locations,
tmin, tmax, umin, umax, oldTdiff, reverse, recursion) { tmin, tmax, umin, umax, oldTdiff, reverse, recursion) {
/*#*/ if (__options.fatline) {
if(recursion === undefined){ if(recursion === undefined){
recursion |= 0; recursion |= 0;
tmin = tmin || 0; tmax = tmax || 1; tmin = tmin || 0; tmax = tmax || 1;
@ -1343,6 +1228,36 @@ new function() { // Scope for methods that require numerical integration
else // Iterate else // Iterate
addCurveIntersections(v2, v1New, curve2, curve1, locations, addCurveIntersections(v2, v1New, curve2, curve1, locations,
umin, umax, tminNew, tmaxNew, tDiff, !reverse, recursion); umin, umax, tminNew, tmaxNew, tDiff, !reverse, recursion);
/*#*/ } else { // !__options.fatline
// Subdivision method
var bounds1 = Curve.getBounds(v1),
bounds2 = Curve.getBounds(v2);
if (bounds1.touches(bounds2)) {
// See if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if ((Curve.isLinear(v1)
|| Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE))
&& (Curve.isLinear(v2)
|| Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) {
// See if the parametric equations of the lines interesct.
addLineIntersection(v1, v2, curve1, curve2, locations);
} else {
// Subdivide both curves, and see if they intersect.
// If one of the curves is flat already, no further subdivion
// is required.
var v1s = Curve.subdivide(v1),
v2s = Curve.subdivide(v2);
for (var i = 0; i < 2; i++)
for (var j = 0; j < 2; j++)
Curve.getIntersections(v1s[i], v2s[j], curve1, curve2,
locations);
}
}
return locations;
/*#*/ } // !__options.fatline
} }
/*#*/ if (__options.fatline) { /*#*/ if (__options.fatline) {