Clean-up code from PR #1087

Closes #1085
This commit is contained in:
Jürg Lehni 2016-07-09 01:01:19 +02:00
parent 1914e64e4b
commit 02658c9e74
3 changed files with 96 additions and 44 deletions

View file

@ -60,6 +60,7 @@ var Numerical = new function() {
var abs = Math.abs,
sqrt = Math.sqrt,
pow = Math.pow,
// Constants
EPSILON = 1e-12,
MACHINE_EPSILON = 1.12e-16;
@ -67,23 +68,37 @@ var Numerical = new function() {
return value < min ? min : value > max ? max : value;
}
function splitDouble(X) {
var bigX = X * 134217729, // X*(2^27 + 1)
Y = X - bigX,
Xh = Y + bigX; // Don't optimize Y away!
return [Xh, X - Xh];
function getDiscriminant(a, b, c) {
// Ported from @hkrish's polysolve.c
function split(a) {
var x = a * 134217729,
y = a - x,
hi = y + x, // Don't optimize y away!
lo = a - hi;
return [hi, lo];
}
function higherPrecisionDiscriminant(a, b, c) {
var ad = splitDouble(a),
bd = splitDouble(b),
cd = splitDouble(c),
var D = b * b - a * c,
E = b * b + a * c;
if (abs(D) * 3 < E) {
var ad = split(a),
bd = split(b),
cd = split(c),
p = b * b,
dp = (bd[0] * bd[0] - p + 2 * bd[0] * bd[1]) + bd[1] * bd[1],
q = a * c,
dq = (ad[0] * cd[0] - q + ad[0] * cd[1] + ad[1] * cd[0])
+ ad[1] * cd[1];
return (p - q) + (dp - dq);
D = (p - q) + (dp - dq); // Dont omit parentheses!
}
return D;
}
function getNormalizationFactor(x) {
// Normalization is done by scaling coefficients with a power of 2, so
// that all the bits in the mantissa remain unchanged.
return pow(2, -Math.floor(
Math.log(x || MACHINE_EPSILON) * Math.LOG2E + 0.5));
}
return /** @lends Numerical */{
@ -241,31 +256,21 @@ var Numerical = new function() {
eMax = max + EPSILON,
x1, x2 = Infinity,
B = b,
D, E, pi = 3;
D, E;
// a, b, c are expected to be the coefficients of the equation:
// Ax² - 2Bx + C == 0, so we take b = -B/2:
b /= -2;
D = b * b - a * c; // Discriminant
E = b * b + a * c;
if (pi * abs(D) < E) {
D = higherPrecisionDiscriminant(a, b, c);
}
b *= -0.5;
D = getDiscriminant(a, b, c);
// If the discriminant is very small, we can try to pre-condition
// the coefficients, so that we may get better accuracy
if (D !== 0 && abs(D) < MACHINE_EPSILON) {
// If the geometric mean of the coefficients is small enough
var sc = (abs(a) + abs(b) + abs(c)) || MACHINE_EPSILON;
sc = pow(2, -Math.floor(Math.log(sc) * Math.LOG2E + 0.5));
a *= sc;
b *= sc;
c *= sc;
// Recalculate the discriminant
D = b * b - a * c;
E = b * b + a * c;
B = - 2.0 * b;
if (pi * abs(D) < E) {
D = higherPrecisionDiscriminant(a, b, c);
}
if (D && abs(D) < MACHINE_EPSILON) {
// Normalize coefficients.
var f = getNormalizationFactor(abs(a) + abs(b) + abs(c));
a *= f;
b *= f;
c *= f;
B *= f;
D = getDiscriminant(a, b, c);
}
if (abs(a) < EPSILON) {
// This could just be a linear equation
@ -326,18 +331,18 @@ var Numerical = new function() {
* @author Harikrishnan Gopalakrishnan <hari.exeption@gmail.com>
*/
solveCubic: function(a, b, c, d, roots, min, max) {
var count = 0, x, b1, c2,
var x, b1, c2,
s = Math.max(abs(a), abs(b), abs(c), abs(d));
// Normalise coefficients a la Jenkins & Traub's RPOLY
if ((s < 1e-7 && s > 0) || s > 1e7) {
// Normalize coefficients à la Jenkins & Traub's RPOLY
if (s < 1e-8 || s > 1e8) {
// Scale the coefficients by a multiple of the exponent of
// coefficients so that all the bits in the mantissa are
// preserved.
var p = pow(2, -Math.floor(Math.log(s) * Math.LOG2E));
a *= p;
b *= p;
c *= p;
d *= p;
var f = getNormalizationFactor(s);
a *= f;
b *= f;
c *= f;
d *= f;
}
// If a or d is zero, we only need to solve a quadratic, so we set
// the coefficients appropriately.

45
test/tests/Numerical.js Normal file
View file

@ -0,0 +1,45 @@
/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2016, Juerg Lehni & Jonathan Puckey
* http://scratchdisk.com/ & http://jonathanpuckey.com/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
QUnit.module('Numerical');
test('Numerical.solveQuadratic()', function() {
function solve(s) {
var roots = [],
count = Numerical.solveQuadratic(s, 0, -s, roots);
return roots;
}
var expected = [1, -1];
equals(solve(1), expected,
'Numerical.solveQuadratic().');
equals(solve(Numerical.EPSILON), expected,
'Numerical.solveQuadratic() with an identical set of' +
'coefficients at different scale.');
});
test('Numerical.solveCubic()', function() {
function solve(s) {
var roots = [],
count = Numerical.solveCubic(0.5 * s, -s, -s, -s, roots);
return roots;
}
var expected = [2.919639565839418];
equals(solve(1), expected,
'Numerical.solveCubic().');
equals(solve(Numerical.EPSILON), expected,
'Numerical.solveCubic() with an identical set of' +
'coefficients at different scale.');
});

View file

@ -58,3 +58,5 @@
/*#*/ include('SvgImport.js');
/*#*/ include('SvgExport.js');
/*#*/ include('Numerical.js');