paper.js/examples/Paperjs.org/SatieLikedToDraw.html

140 lines
3.7 KiB
HTML
Raw Normal View History

2013-12-10 20:15:51 -05:00
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Erik Liked To Dance</title>
<link rel="stylesheet" href="../css/style.css">
<script type="text/javascript" src="../../dist/paper.js"></script>
<script type="text/paperscript" canvas="canvas">
var leftPath = new Path({
strokeColor: 'red',
opacity: 0.5
});
var rightPath = new Path({
strokeColor: 'green',
opacity: 0.5
});
var amount = 8;
var step = view.size.width / (amount + 1);
var flip = false;
for (var i = 0; i <= amount; i++) {
leftPath.add(new Point(i * step, 0));
rightPath.add(new Point(i * step, 0));
}
var group = new Group({
children: [leftPath, rightPath],
transformContent: false,
strokeWidth: 30,
strokeJoin: 'round',
strokeCap: 'butt',
anchor: leftPath.position,
2013-12-10 20:15:51 -05:00
position: view.center
});
function onMouseDown() {
flip = !flip;
}
function onKeyDown(event) {
2013-12-11 11:51:58 -05:00
if (event.key === 'space')
2013-12-10 20:15:51 -05:00
group.fullySelected = !group.fullySelected;
}
var audio, source, analyserL, analyserR, freqByteData;
view.onFrame = function() {
var step = view.size.width / (amount + 1);
2013-12-11 11:51:58 -05:00
var scale = view.size.height / 1.5;
2013-12-10 20:15:51 -05:00
analyserL.getByteFrequencyData(freqByteData);
var leftBands = getEqualizerBands(freqByteData, true);
analyserR.getByteFrequencyData(freqByteData);
var rightBands = getEqualizerBands(freqByteData, true);
for (var i = 1; i <= amount; i++) {
leftPath.segments[i].point = [i * step, -leftBands[i - 1] * scale];
rightPath.segments[i].point = [i * step, -rightBands[i - 1] * scale * (flip ? -1 : 1)];
}
leftPath.smooth();
rightPath.smooth();
group.anchor = [leftPath.position.x, 0];
2013-12-10 20:15:51 -05:00
group.position = view.center;
}
// Pause animation until we have data
view.pause();
var AudioContext = window.AudioContext || window.webkitAudioContext;
if (AudioContext) {
audio = new AudioContext();
source = audio.createBufferSource();
// Create two separate analyzers for left and right channel.
analyserL = audio.createAnalyser();
analyserL.smoothingTimeConstant = 0.25;
analyserL.fftSize = Math.pow(2, amount) * 2;
analyserR = audio.createAnalyser();
analyserR.smoothingTimeConstant = analyserL.smoothingTimeConstant;
analyserR.fftSize = analyserL.fftSize;
// Create the buffer to receive the analyzed data.
freqByteData = new Uint8Array(analyserL.frequencyBinCount);
// Create a splitter to feed them both
var splitter = audio.createChannelSplitter();
// Connect audio processing graph
source.connect(splitter);
splitter.connect(analyserL, 0, 0);
splitter.connect(analyserR, 1, 0);
// Connect source to output also so we can hear it
source.connect(audio.destination);
loadAudioBuffer('http://dl.dropboxusercontent.com/s/ozlvjokqu7ujjwh/gnossienne.mp3');
} else {
// TODO: Print error message
alert('Audio not supported');
}
function loadAudioBuffer(url) {
// Load asynchronously
var request = new XMLHttpRequest();
request.open("GET", url, true);
request.responseType = "arraybuffer";
request.onload = function() {
audio.decodeAudioData(
request.response,
function(buffer) {
source.buffer = buffer;
source.loop = true;
source.start(0);
view.play();
},
function(buffer) {
alert("Error loading MP3");
}
);
};
request.send();
}
function getEqualizerBands(data) {
var bands = [];
var amount = Math.sqrt(data.length) / 2;
for(var i = 0; i < amount; i++) {
var start = Math.pow(2, i) - 1;
var end = start * 2 + 1;
var sum = 0;
for (var j = start; j < end; j++) {
sum += data[j];
}
var avg = sum / (255 * (end - start));
bands[i] = Math.sqrt(avg / Math.sqrt(2));
}
return bands;
}
2013-12-11 11:51:58 -05:00
</script>
2013-12-10 20:15:51 -05:00
</head>
<body>
<canvas id="canvas" resize></canvas>
</body>
</html>