paper.js/src/util/Numerical.js

97 lines
2.6 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js
*
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
2011-03-07 20:41:50 -05:00
* http://paperjs.org/
2011-03-06 19:50:44 -05:00
* http://scriptographer.org/
*
2011-03-07 20:41:50 -05:00
* Distributed under the MIT license. See LICENSE file for details.
*
2011-03-06 19:50:44 -05:00
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
2011-03-07 20:41:50 -05:00
* All rights reserved.
2011-03-06 19:50:44 -05:00
*/
2011-03-06 19:21:04 -05:00
var Numerical = new function() {
2011-03-06 19:40:48 -05:00
var abscissa = [
-0.5773502692, 0.5773502692,
2011-03-06 19:38:33 -05:00
-0.7745966692, 0.7745966692, 0,
-0.8611363116, 0.8611363116, -0.3399810436, 0.3399810436,
2011-03-06 19:38:33 -05:00
-0.9061798459, 0.9061798459, -0.5384693101, 0.5384693101, 0.0000000000,
-0.9324695142, 0.9324695142, -0.6612093865, 0.6612093865, -0.2386191861, 0.2386191861,
2011-03-06 19:38:33 -05:00
-0.9491079123, 0.9491079123, -0.7415311856, 0.7415311856, -0.4058451514, 0.4058451514, 0.0000000000,
-0.9602898565, 0.9602898565, -0.7966664774, 0.7966664774, -0.5255324099, 0.5255324099, -0.1834346425, 0.1834346425
],
weight = [
2011-03-06 19:38:33 -05:00
1, 1,
0.5555555556, 0.5555555556, 0.8888888888,
0.3478548451, 0.3478548451, 0.6521451549, 0.6521451549,
0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705, 0.5688888888,
0.1713244924, 0.1713244924, 0.3607615730, 0.3607615730, 0.4679139346, 0.4679139346,
0.1294849662, 0.1294849662, 0.2797053915, 0.2797053915, 0.3818300505, 0.3818300505, 0.4179591837,
0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345, 0.3137066459, 0.3137066459, 0.3626837834, 0.3626837834
];
return {
2011-03-06 19:17:32 -05:00
TOLERANCE: 10e-6,
2011-03-06 19:40:48 -05:00
/**
* Gauss-Legendre Numerical Integration, ported from Singularity:
*
* Copyright (c) 2006-2007, Jim Armstrong (www.algorithmist.net)
* All Rights Reserved.
*/
integrate: function(f, a, b, n) {
n = Math.min(Math.max(n, 2), 8);
var l = n == 2 ? 0 : n * (n - 1) / 2 - 1,
sum = 0,
mul = 0.5 * (b - a),
ab2 = mul + a;
for(var i = 0; i < n; i++)
sum += f(ab2 + mul * abscissa[l + i]) * weight[l + i];
return mul * sum;
},
findRootNewton: function(f, fd, a, b, n, tol) {
var x = 0.5 * (a + b);
for (var i = 0; i < n; i++) {
var dx = f(x) / fd(x);
x -= dx;
if (Math.abs(dx) < tol)
return x;
}
return x;
},
findRootFalsePosition: function(f, a, b, n, tol) {
var fa = f(a),
fb = f(b),
dx = b - a,
del, x;
for (var i = 0; i <= n; i++) {
x = a + dx * fa / (fa - fb);
var fx = f(x);
if (fx < 0) {
del = a - x;
a = x;
fa = fx;
} else {
del = b - x;
b = x;
fb = fx;
}
dx = b - a;
if (Math.abs(del) < tol || fx == 0)
return x;
}
return x;
},
};
};