paper.js/src/basic/Matrix.js

521 lines
14 KiB
JavaScript
Raw Normal View History

// Based on goog.graphics.AffineTransform, as part of the Closure Library.
// Copyright 2008 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
var Matrix = Base.extend({
2011-02-13 20:52:53 -05:00
beans: true,
/**
* Creates a 2D affine transform. An affine transform performs a linear
* mapping from 2D coordinates to other 2D coordinates that preserves the
* "straightness" and "parallelness" of lines.
*
* Such a coordinate transformation can be represented by a 3 row by 3
* column matrix with an implied last row of [ 0 0 1 ]. This matrix
* transforms source coordinates (x,y) into destination coordinates (x',y')
* by considering them to be a column vector and multiplying the coordinate
* vector by the matrix according to the following process:
* <pre>
* [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ]
* [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ]
* [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
* </pre>
*
* This class is optimized for speed and minimizes calculations based on its
* knowledge of the underlying matrix (as opposed to say simply performing
* matrix multiplication).
*
* @param {number} m00 The m00 coordinate of the transform.
* @param {number} m10 The m10 coordinate of the transform.
* @param {number} m01 The m01 coordinate of the transform.
* @param {number} m11 The m11 coordinate of the transform.
* @param {number} m02 The m02 coordinate of the transform.
* @param {number} m12 The m12 coordinate of the transform.
* @constructor
*/
initialize: function(m00, m10, m01, m11, m02, m12) {
var ok = true;
if (arguments.length == 6) {
this.set(m00, m10, m01, m11, m02, m12);
} else if (arguments == 1) {
var mx = arguments[0];
if (mx instanceof Matrix) {
this.set(mx._m00, mx._m10, mx._m01, mx._m11, mx._m02, mx._m12);
} else if (Array.isArray(mx)) {
this.set.apply(this, mx);
} else {
ok = false;
}
} else if (arguments.length) {
ok = false;
} else {
this._m00 = this._m11 = 1;
this._m10 = this._m01 = this._m02 = this._m12 = 0;
}
if (!ok)
throw Error('Unsupported matrix parameters');
},
/**
* @return {Matrix} A copy of this transform.
*/
clone: function() {
return new Matrix(this._m00, this._m10, this._m01,
this._m11, this._m02, this._m12);
},
/**
* Sets this transform to the matrix specified by the 6 values.
*
* @param {number} m00 The m00 coordinate of the transform.
* @param {number} m10 The m10 coordinate of the transform.
* @param {number} m01 The m01 coordinate of the transform.
* @param {number} m11 The m11 coordinate of the transform.
* @param {number} m02 The m02 coordinate of the transform.
* @param {number} m12 The m12 coordinate of the transform.
* @return {Matrix} This affine transform.
*/
set: function(m00, m10, m01, m11, m02, m12) {
this._m00 = m00;
this._m10 = m10;
this._m01 = m01;
this._m11 = m11;
this._m02 = m02;
this._m12 = m12;
return this;
},
/**
* Concatentates this transform with a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @param {Point} center The optional center for the scaling transformation.
* @return {Matrix} This affine transform.
*/
scale: function(sx, sy /* | scale */, center) {
if (arguments.length < 2 || typeof sy == 'object') {
// sx is the single scale parameter, representing both sx and sy
// Read center first from argument 1, then set sy = sx (thus
// modifing the content of argument 1!)
center = Point.read(arguments, 1);
sy = sx;
} else {
center = Point.read(arguments, 2);
}
if (center)
this.translate(center);
this._m00 *= sx;
this._m10 *= sx;
this._m01 *= sy;
this._m11 *= sy;
if (center)
this.translate(center.negate());
return this;
},
/**
* Concatentates this transform with a translate transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {Matrix} This affine transform.
*/
translate: function(point) {
point = Point.read(arguments);
if (point) {
var x = point.x, y = point.y;
this._m02 += x * this._m00 + y * this._m01;
this._m12 += x * this._m10 + y * this._m11;
}
return this;
},
/**
* Concatentates this transform with a rotation transformation around an
* anchor point.
*
* @param {number} angle The angle of rotation measured in degrees.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {Matrix} This affine transform.
*/
rotate: function(angle, center) {
return this.concatenate(
Matrix.getRotateInstance.apply(Matrix, arguments));
},
/**
* Concatentates this transform with a shear transformation.
*
* @param {number} shx The x shear factor.
* @param {number} shy The y shear factor.
* @param {Point} center The optional center for the shear transformation.
* @return {Matrix} This affine transform.
*/
shear: function(shx, shy, center) {
// See #scale() for explanation of this:
if (arguments.length < 2 || typeof shy == 'object') {
center = Point.read(arguments, 1);
sy = sx;
} else {
center = Point.read(arguments, 2);
}
if (center)
this.translate(center);
var m00 = this._m00;
var m10 = this._m10;
this._m00 += shy * this._m01;
this._m10 += shy * this._m11;
this._m01 += shx * m00;
this._m11 += shx * m10;
if (center)
this.translate(center.negate());
return this;
},
/**
2011-02-15 17:51:02 -05:00
* @return {string} A string representation of this transform.
*/
toString: function() {
return '[['
+ [this._m00, this._m10, this._m01].join(', ') + '], ['
+ [this._m11, this._m02, this._m12].join(', ') + ']]';
},
/**
* @return {number} The scaling factor in the x-direction (m00).
*/
getScaleX: function() {
return this._m00;
},
setScaleX: function(scaleX) {
this._m00 = scaleX;
},
/**
* @return {number} The scaling factor in the y-direction (m11).
*/
getScaleY: function() {
return this._m11;
},
setScaleY: function(scaleY) {
this._m11 = scaleY;
},
/**
* @return {number} The translation in the x-direction (m02).
*/
getTranslateX: function() {
return this._m02;
},
setTranslateX: function(translateX) {
this._m02 = translateX;
},
/**
* @return {number} The translation in the y-direction (m12).
*/
getTranslateY: function() {
return this._m12;
},
setTranslateY: function(translateY) {
this._m12 = translateY;
},
/**
* @return {number} The shear factor in the x-direction (m01).
*/
getShearX: function() {
return this._m01;
},
setShearX: function(shearX) {
this._m01 = shearX;
},
/**
* @return {number} The shear factor in the y-direction (m10).
*/
getShearY: function() {
return this._m10;
},
setShearY: function(shearY) {
this._m10 = shearY;
},
/**
* Concatenates an affine transform to this transform.
*
* @param {Matrix} mx The transform to concatenate.
* @return {Matrix} This affine transform.
*/
concatenate: function(mx) {
var m0 = this._m00;
var m1 = this._m01;
this._m00 = mx._m00 * m0 + mx._m10 * m1;
this._m01 = mx._m01 * m0 + mx._m11 * m1;
this._m02 += mx._m02 * m0 + mx._m12 * m1;
m0 = this._m10;
m1 = this._m11;
this._m10 = mx._m00 * m0 + mx._m10 * m1;
this._m11 = mx._m01 * m0 + mx._m11 * m1;
this._m12 += mx._m02 * m0 + mx._m12 * m1;
return this;
},
/**
* Pre-concatenates an affine transform to this transform.
*
* @param {Matrix} mx The transform to preconcatenate.
* @return {Matrix} This affine transform.
*/
preConcatenate: function(mx) {
var m0 = this._m00;
var m1 = this._m10;
this._m00 = mx._m00 * m0 + mx._m01 * m1;
this._m10 = mx._m10 * m0 + mx._m11 * m1;
m0 = this._m01;
m1 = this._m11;
this._m01 = mx._m00 * m0 + mx._m01 * m1;
this._m11 = mx._m10 * m0 + mx._m11 * m1;
m0 = this._m02;
m1 = this._m12;
this._m02 = mx._m00 * m0 + mx._m01 * m1 + mx._m02;
this._m12 = mx._m10 * m0 + mx._m11 * m1 + mx._m12;
return this;
},
/**
* Transforms a point or an array of coordinates by this matrix and returns
* the result. If an array is transformed, the the result is stored into a
* destination array.
*
* @param {Point} point The point to be transformed.
*
* @param {Array} src The array containing the source points
2011-02-15 17:51:02 -05:00
* as x, y value pairs.
* @param {number} srcOff The offset to the first point to be transformed.
* @param {Array} dst The array into which to store the transformed
2011-02-15 17:51:02 -05:00
* point pairs.
* @param {number} dstOff The offset of the location of the first
* transformed point in the destination array.
* @param {number} numPts The number of points to tranform.
*/
transform: function(/* point | */ src, srcOff, dst, dstOff, numPts) {
if (arguments.length == 5) {
var i = srcOff;
var j = dstOff;
var srcEnd = srcOff + 2 * numPts;
while (i < srcEnd) {
var x = src[i++];
var y = src[i++];
dst[j++] = x * this._m00 + y * this._m01 + this._m02;
dst[j++] = x * this._m10 + y * this._m11 + this._m12;
}
return dst;
} else if (arguments.length > 0) {
var point = Point.read(arguments);
if (point) {
var x = point.x, y = point.y;
return new Point(
x * this._m00 + y * this._m01 + this._m02,
x * this._m10 + y * this._m11 + this._m12
);
}
}
return null;
},
/**
* @return {number} The determinant of this transform.
*/
getDeterminant: function() {
return this._m00 * this._m11 - this._m01 * this._m10;
},
/**
* @return {boolean} Whether this transform is the identity transform.
*/
isIdentity: function() {
return this._m00 == 1 && this._m10 == 0 && this._m01 == 0 &&
this._m11 == 1 && this._m02 == 0 && this._m12 == 0;
},
/**
2011-02-15 17:51:02 -05:00
* Returns whether the transform is invertible. A transform is not
* invertible if the determinant is 0 or any value is non-finite or NaN.
*
* @return {boolean} Whether the transform is invertible.
*/
isInvertible: function() {
var det = this.getDeterminant();
return isFinite(det) && det != 0 && isFinite(this._m02)
&& isFinite(this._m12);
},
/**
* Checks whether the matrix is singular or not. Singular matrices cannot be
* inverted.
*
* @return {boolean} Whether the matrix is singular.
*/
isSingular: function() {
return !this.isInvertible();
},
/**
2011-02-15 17:51:02 -05:00
* @return {Matrix} An Matrix object representing the inverse
* transformation.
*/
createInverse: function() {
var det = this.getDeterminant();
if (isFinite(det) && det != 0 && isFinite(this._m02)
&& isFinite(this._m12)) {
return new Matrix(
this._m11 / det,
-this._m10 / det,
-this._m01 / det,
this._m00 / det,
(this._m01 * this._m12 - this._m11 * this._m02) / det,
(this._m10 * this._m02 - this._m00 * this._m12) / det);
}
return null;
},
/**
* Sets this transform to a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {Matrix} This affine transform.
*/
setToScale: function(sx, sy) {
return this.set(sx, 0, 0, sy, 0, 0);
},
/**
* Sets this transform to a translation transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
* @return {Matrix} This affine transform.
*/
setToTranslation: function(delta) {
delta = Point.read(arguments);
if (delta) {
return this.set(1, 0, 0, 1, delta.x, delta.y);
}
return this;
},
/**
* Sets this transform to a shearing transformation.
*
* @param {number} shx The x-axis shear factor.
* @param {number} shy The y-axis shear factor.
* @return {Matrix} This affine transform.
*/
setToShear: function(shx, shy) {
return this.set(1, shy, shx, 1, 0, 0);
},
/**
* Sets this transform to a rotation transformation.
*
* @param {number} angle The angle of rotation measured in degrees.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
* @return {Matrix} This affine transform.
*/
setToRotation: function(angle, center) {
center = Point.read(arguments, 1);
if (center) {
angle = angle * Math.PI / 180.0;
var x = center.x, y = center.y;
var cos = Math.cos(angle);
var sin = Math.sin(angle);
return this.set(cos, sin, -sin, cos,
x - x * cos + y * sin,
y - x * sin - y * cos);
}
return this;
},
2011-02-21 13:03:57 -05:00
/**
* Applies this matrix to the specified Canvas Context.
*/
2011-03-02 02:52:13 -05:00
applyToContext: function(context, reset) {
// Canvas contexts seem to use another orientation: The shearX (m01) and
// shearY (m10) values need to be flipped to get correct behaviour e.g.
// when using rotation or shearing.
context[reset ? 'setTransform' : 'transform'](
this._m00, -this._m01, -this._m10,
this._m11, this._m02, this._m12
);
2011-02-21 13:03:57 -05:00
},
statics: {
/**
* Creates a transform representing a scaling transformation.
*
* @param {number} sx The x-axis scaling factor.
* @param {number} sy The y-axis scaling factor.
* @return {Matrix} A transform representing a scaling
2011-02-15 17:51:02 -05:00
* transformation.
*/
getScaleInstance: function(sx, sy) {
var mx = new Matrix();
return mx.setToScale.apply(mx, arguments);
},
/**
* Creates a transform representing a translation transformation.
*
* @param {number} dx The distance to translate in the x direction.
* @param {number} dy The distance to translate in the y direction.
2011-02-15 17:51:02 -05:00
* @return {Matrix} A transform representing a translation
* transformation.
*/
getTranslateInstance: function(delta) {
var mx = new Matrix();
return mx.setToTranslation.apply(mx, arguments);
},
/**
* Creates a transform representing a shearing transformation.
*
* @param {number} shx The x-axis shear factor.
* @param {number} shy The y-axis shear factor.
2011-02-15 17:51:02 -05:00
* @return {Matrix} A transform representing a shearing transformation.
*/
getShearInstance: function(shx, shy, center) {
var mx = new Matrix();
return mx.setToShear.apply(mx, arguments);
},
/**
* Creates a transform representing a rotation transformation.
*
* @param {number} angle The angle of rotation measured in degrees.
* @param {number} x The x coordinate of the anchor point.
* @param {number} y The y coordinate of the anchor point.
2011-02-15 17:51:02 -05:00
* @return {Matrix} A transform representing a rotation transformation.
*/
getRotateInstance: function(angle, center) {
var mx = new Matrix();
return mx.setToRotation.apply(mx, arguments);
}
}
});