paper.js/src/path/Curve.js

280 lines
6.9 KiB
JavaScript
Raw Normal View History

var Curve = this.Curve = Base.extend({
beans: true,
2011-03-06 07:24:15 -05:00
initialize: function(arg0, arg1, arg2, arg3) {
if (arguments.length == 0) {
this._segment1 = new Segment();
this._segment2 = new Segment();
} else if (arguments.length == 1) {
// TODO: If beans are not activated, this won't copy from
// an existing segment. OK?
this._segment1 = new Segment(arg0.segment1);
this._segment2 = new Segment(arg0.segment2);
} else if (arguments.length == 2) {
if (arg0 instanceof Path) {
this._path = arg0;
this._index1 = arg1;
this._updateSegments();
} else {
this._segment1 = new Segment(arg0);
this._segment2 = new Segment(arg1);
}
} else if (arguments.length == 4) {
this._segment1 = new Segment(arg0, null, arg1);
this._segment2 = new Segment(arg3, arg2, null);
}
},
_updateSegments: function() {
if (this._path) {
this._index2 = this._index1 + 1;
// A closing curve?
var segments = this._path._segments;
if (this._index2 >= segments.length)
this._index2 = 0;
this._segment1 = segments[this._index1];
this._segment2 = segments[this._index2];
}
},
/**
* The first anchor point of the curve.
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function() {
var point = Point.read(arguments);
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function() {
var point = Point.read(arguments);
this._segment2._point.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the first anchor point.
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function() {
var point = Point.read(arguments);
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function() {
var point = Point.read(arguments);
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*/
getSegment2: function() {
return this._segment2;
},
2011-03-06 08:26:09 -05:00
getPath: function() {
return this._path;
},
getIndex: function() {
return this._index1;
},
_setIndex: function(index) {
this._index1 = index;
this._updateSegments();
},
getNext: function() {
var curves = this._path && this._path._curves;
// TODO: Add cyclic looping when closed back to Scriptographer
return curves && (curves[this._index1 + 1]
|| this._path.closed && curves[0]) || null;
},
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._index1 - 1]
|| this._path.closed && curves[curves.length - 1]) || null;
},
getLength: function() {
var z0 = this._segment1._point,
z1 = this._segment2._point,
c0 = z0.add(this._segment1._handleOut),
c1 = z1.add(this._segment2._handleIn);
// TODO: Check for straight lines and handle separately.
// Calculate the coefficients of a Bezier derivative.
var ax = 9 * (c0.x - c1.x) + 3 * (z1.x - z0.x),
bx = 6 * (z0.x + c1.x) - 12 * c0.x,
cx = 3 * (c0.x - z0.x),
ay = 9 * (c0.y - c1.y) + 3 * (z1.y - z0.y),
by = 6 * (z0.y + c1.y) - 12 * c0.y,
cy = 3 * (c0.y - z0.y);
function ds(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
}
return MathUtils.gauss(ds, 0.0, 1.0, 8);
},
/**
* Checks if this curve is linear, meaning it does not define any curve
* handle.
* @return {@true if the curve is linear}
*/
isLinear: function() {
return this._segment1._handleOut.isZero()
&& this._segment2._handleIn.isZero();
},
// TODO: getParameter(length)
// TODO: getParameter(point, precision)
// TODO: getLocation
// TODO: getIntersections
// TODO: adjustThroughPoint
transform: function(matrix) {
return new Curve(
matrix.transform(this._segment1._point),
matrix.transform(this._segment1._handleOut),
matrix.transform(this._segment2._handleIn),
matrix.transform(this._segment2._point));
},
reverse: function() {
return new Curve(this._segment2.reverse(), this._segment1.reverse());
},
// TODO: divide
// TODO: split
// TODO: getPartLength(fromParameter, toParameter)
clone: function() {
return new Curve(this._segment1, this._segment2);
},
toString: function() {
return '{ point1: ' + this._segment1._point
+ (!this._segment1._handleOut.isZero()
? ', handle1: ' + this._segment1._handleOut : '')
+ (this._segment2._handleIn.isZero()
? ', handle2: ' + this._segment2._handleIn : '')
+ ', point2: ' + this._segment2._point
+ ' }';
}
}, new function() {
function evaluate(that, t, type) {
// Calculate the polynomial coefficients. caution: handles are relative
// to points
2011-03-06 08:07:49 -05:00
var point1 = that._segment1._point,
handle1 = that._segment1._handleOut,
handle2 = that._segment2._handleIn,
point2 = that._segment2._point,
x, y;
// Handle special case at beginning / end of curve
// TODO: Port back to Scriptographer, so 0.000000000001 won't be
// required anymore
if (t == 0 || t == 1) {
var point;
switch (type) {
case 0: // point
point = t == 0 ? point1 : point2;
break;
case 1: // tangent
case 2: // normal
point = t == 0
? handle1.isZero()
? handle2.isZero()
? point2.subtract(point1)
: point2.add(handle2).subtract(point1)
: handle1
: handle2.isZero() // t == 1
? handle1.isZero()
? point1.subtract(point2)
: point1.add(handle1).subtract(point2)
: handle2;
break;
}
x = point.x;
y = point.y;
} else {
var dx = point2.x - point1.x,
cx = 3 * handle1.x,
bx = 3 * (dx + handle2.x - handle1.x) - cx,
ax = dx - cx - bx,
dy = point2.y - point1.y,
cy = 3.0 * handle1.y,
by = 3.0 * (dy + handle2.y - handle1.y) - cy,
ay = dy - cy - by;
switch (type) {
case 0: // point
x = ((ax * t + bx) * t + cx) * t + point1.x;
y = ((ay * t + by) * t + cy) * t + point1.y;
break;
case 1: // tangent
case 2: // normal
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
x = (3 * ax * t + 2 * bx) * t + cx,
y = (3 * ay * t + 2 * by) * t + cy;
}
}
// The normal is simply the rotated tangent:
// TODO: Rotate normals the other way in Scriptographer too?
// (Depending on orientation, I guess?)
return type == 2 ? new Point(y, -x) : new Point(x, y);
}
return {
getPoint: function(parameter) {
return evaluate(this, parameter, 0);
},
getTangent: function(parameter) {
return evaluate(this, parameter, 1);
},
getNormal: function(parameter) {
return evaluate(this, parameter, 2);
}
};
});