2011-03-06 19:50:44 -05:00
|
|
|
/*
|
2013-01-28 21:03:27 -05:00
|
|
|
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
|
2011-03-07 20:41:50 -05:00
|
|
|
* http://paperjs.org/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2013-01-28 21:03:27 -05:00
|
|
|
* Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey
|
2011-03-06 19:50:44 -05:00
|
|
|
* http://lehni.org/ & http://jonathanpuckey.com/
|
2011-06-30 06:01:51 -04:00
|
|
|
*
|
2011-07-01 06:17:45 -04:00
|
|
|
* Distributed under the MIT license. See LICENSE file for details.
|
|
|
|
*
|
2011-03-07 20:41:50 -05:00
|
|
|
* All rights reserved.
|
2011-03-06 19:50:44 -05:00
|
|
|
*/
|
|
|
|
|
2013-04-19 20:03:41 -04:00
|
|
|
var Numerical = this.Numerical = new function() {
|
2011-03-06 19:40:48 -05:00
|
|
|
|
2011-04-21 07:37:35 -04:00
|
|
|
// Lookup tables for abscissas and weights with values for n = 2 .. 16.
|
|
|
|
// As values are symetric, only store half of them and addapt algorithm
|
|
|
|
// to factor in symetry.
|
2011-03-19 21:59:53 -04:00
|
|
|
var abscissas = [
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.5773502691896257645091488],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.7745966692414833770358531],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.3399810435848562648026658,0.8611363115940525752239465],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.5384693101056830910363144,0.9061798459386639927976269],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.2386191860831969086305017,0.6612093864662645136613996,0.9324695142031520278123016],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.4058451513773971669066064,0.7415311855993944398638648,0.9491079123427585245261897],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.1834346424956498049394761,0.5255324099163289858177390,0.7966664774136267395915539,0.9602898564975362316835609],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.3242534234038089290385380,0.6133714327005903973087020,0.8360311073266357942994298,0.9681602395076260898355762],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.1488743389816312108848260,0.4333953941292471907992659,0.6794095682990244062343274,0.8650633666889845107320967,0.9739065285171717200779640],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.2695431559523449723315320,0.5190961292068118159257257,0.7301520055740493240934163,0.8870625997680952990751578,0.9782286581460569928039380],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.1252334085114689154724414,0.3678314989981801937526915,0.5873179542866174472967024,0.7699026741943046870368938,0.9041172563704748566784659,0.9815606342467192506905491],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.2304583159551347940655281,0.4484927510364468528779129,0.6423493394403402206439846,0.8015780907333099127942065,0.9175983992229779652065478,0.9841830547185881494728294],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.1080549487073436620662447,0.3191123689278897604356718,0.5152486363581540919652907,0.6872929048116854701480198,0.8272013150697649931897947,0.9284348836635735173363911,0.9862838086968123388415973],
|
2011-03-19 21:59:53 -04:00
|
|
|
[0,0.2011940939974345223006283,0.3941513470775633698972074,0.5709721726085388475372267,0.7244177313601700474161861,0.8482065834104272162006483,0.9372733924007059043077589,0.9879925180204854284895657],
|
2011-03-21 08:46:00 -04:00
|
|
|
[ 0.0950125098376374401853193,0.2816035507792589132304605,0.4580167776572273863424194,0.6178762444026437484466718,0.7554044083550030338951012,0.8656312023878317438804679,0.9445750230732325760779884,0.9894009349916499325961542]
|
2011-07-04 13:47:54 -04:00
|
|
|
];
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-07-04 13:47:54 -04:00
|
|
|
var weights = [
|
2011-03-19 21:59:53 -04:00
|
|
|
[1],
|
|
|
|
[0.8888888888888888888888889,0.5555555555555555555555556],
|
|
|
|
[0.6521451548625461426269361,0.3478548451374538573730639],
|
|
|
|
[0.5688888888888888888888889,0.4786286704993664680412915,0.2369268850561890875142640],
|
|
|
|
[0.4679139345726910473898703,0.3607615730481386075698335,0.1713244923791703450402961],
|
|
|
|
[0.4179591836734693877551020,0.3818300505051189449503698,0.2797053914892766679014678,0.1294849661688696932706114],
|
|
|
|
[0.3626837833783619829651504,0.3137066458778872873379622,0.2223810344533744705443560,0.1012285362903762591525314],
|
|
|
|
[0.3302393550012597631645251,0.3123470770400028400686304,0.2606106964029354623187429,0.1806481606948574040584720,0.0812743883615744119718922],
|
|
|
|
[0.2955242247147528701738930,0.2692667193099963550912269,0.2190863625159820439955349,0.1494513491505805931457763,0.0666713443086881375935688],
|
|
|
|
[0.2729250867779006307144835,0.2628045445102466621806889,0.2331937645919904799185237,0.1862902109277342514260976,0.1255803694649046246346943,0.0556685671161736664827537],
|
|
|
|
[0.2491470458134027850005624,0.2334925365383548087608499,0.2031674267230659217490645,0.1600783285433462263346525,0.1069393259953184309602547,0.0471753363865118271946160],
|
|
|
|
[0.2325515532308739101945895,0.2262831802628972384120902,0.2078160475368885023125232,0.1781459807619457382800467,0.1388735102197872384636018,0.0921214998377284479144218,0.0404840047653158795200216],
|
|
|
|
[0.2152638534631577901958764,0.2051984637212956039659241,0.1855383974779378137417166,0.1572031671581935345696019,0.1215185706879031846894148,0.0801580871597602098056333,0.0351194603317518630318329],
|
|
|
|
[0.2025782419255612728806202,0.1984314853271115764561183,0.1861610000155622110268006,0.1662692058169939335532009,0.1395706779261543144478048,0.1071592204671719350118695,0.0703660474881081247092674,0.0307532419961172683546284],
|
|
|
|
[0.1894506104550684962853967,0.1826034150449235888667637,0.1691565193950025381893121,0.1495959888165767320815017,0.1246289712555338720524763,0.0951585116824927848099251,0.0622535239386478928628438,0.0271524594117540948517806]
|
2011-03-19 20:04:33 -04:00
|
|
|
];
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-07-04 13:47:54 -04:00
|
|
|
// Math short-cuts for often used methods and values
|
|
|
|
var abs = Math.abs,
|
|
|
|
sqrt = Math.sqrt,
|
2012-10-22 18:21:33 -04:00
|
|
|
pow = Math.pow,
|
2011-07-04 13:47:54 -04:00
|
|
|
cos = Math.cos,
|
|
|
|
PI = Math.PI;
|
|
|
|
|
2012-10-22 18:21:33 -04:00
|
|
|
// Define the missing Math.cbrt()
|
|
|
|
function cbrt(x) {
|
|
|
|
return x > 0 ? pow(x, 1 / 3) : x < 0 ? -pow(-x, 1 / 3) : 0;
|
|
|
|
}
|
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
return {
|
2011-03-06 19:17:32 -05:00
|
|
|
TOLERANCE: 10e-6,
|
2011-07-28 06:03:59 -04:00
|
|
|
// Precision when comparing against 0
|
|
|
|
// TODO: Find a good value
|
|
|
|
EPSILON: 10e-12,
|
2013-04-19 20:03:41 -04:00
|
|
|
// Kappa, see: http://www.whizkidtech.redprince.net/bezier/circle/kappa/
|
|
|
|
KAPPA: 2 * (sqrt(2) - 1) / 3,
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 19:40:48 -05:00
|
|
|
/**
|
2012-11-06 00:06:13 -05:00
|
|
|
* Check if the value is 0, within a tolerance defined by
|
|
|
|
* Numerical.EPSILON.
|
|
|
|
*/
|
|
|
|
isZero: function(val) {
|
2013-03-23 20:05:48 -04:00
|
|
|
return abs(val) <= this.EPSILON;
|
2012-11-06 00:06:13 -05:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Gauss-Legendre Numerical Integration.
|
2011-03-06 19:40:48 -05:00
|
|
|
*/
|
2011-03-07 06:12:00 -05:00
|
|
|
integrate: function(f, a, b, n) {
|
2011-03-19 21:59:53 -04:00
|
|
|
var x = abscissas[n - 2],
|
|
|
|
w = weights[n - 2],
|
|
|
|
A = 0.5 * (b - a),
|
|
|
|
B = A + a,
|
|
|
|
i = 0,
|
|
|
|
m = (n + 1) >> 1,
|
|
|
|
sum = n & 1 ? w[i++] * f(B) : 0; // Handle odd n
|
|
|
|
while (i < m) {
|
|
|
|
var Ax = A * x[i];
|
|
|
|
sum += w[i++] * (f(B + Ax) + f(B - Ax));
|
|
|
|
}
|
|
|
|
return A * sum;
|
2011-03-06 18:25:57 -05:00
|
|
|
},
|
|
|
|
|
2011-03-19 22:01:17 -04:00
|
|
|
/**
|
2011-04-26 07:23:09 -04:00
|
|
|
* Root finding using Newton-Raphson Method combined with Bisection.
|
2011-03-19 22:01:17 -04:00
|
|
|
*/
|
2011-07-04 13:47:54 -04:00
|
|
|
findRoot: function(f, df, x, a, b, n, tolerance) {
|
2011-03-07 06:59:43 -05:00
|
|
|
for (var i = 0; i < n; i++) {
|
2011-04-26 07:23:09 -04:00
|
|
|
var fx = f(x),
|
|
|
|
dx = fx / df(x);
|
2011-06-06 06:44:15 -04:00
|
|
|
// See if we can trust the Newton-Raphson result. If not we use
|
|
|
|
// bisection to find another candiate for Newton's method.
|
2011-07-04 13:47:54 -04:00
|
|
|
if (abs(dx) < tolerance)
|
2011-03-19 20:04:33 -04:00
|
|
|
return x;
|
2011-04-26 07:23:09 -04:00
|
|
|
// Generate a candidate for Newton's method.
|
|
|
|
var nx = x - dx;
|
|
|
|
// Update the root-bounding interval and test for containment of
|
|
|
|
// the candidate. If candidate is outside the root-bounding
|
|
|
|
// interval, use bisection instead.
|
|
|
|
// There is no need to compare to lower / upper because the
|
|
|
|
// tangent line has positive slope, guaranteeing that the x-axis
|
|
|
|
// intercept is larger than lower / smaller than upper.
|
|
|
|
if (fx > 0) {
|
2011-03-19 20:04:33 -04:00
|
|
|
b = x;
|
2011-04-26 07:23:09 -04:00
|
|
|
x = nx <= a ? 0.5 * (a + b) : nx;
|
|
|
|
} else {
|
|
|
|
a = x;
|
|
|
|
x = nx >= b ? 0.5 * (a + b) : nx;
|
2011-03-06 18:25:57 -05:00
|
|
|
}
|
|
|
|
}
|
2011-07-04 13:47:54 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Solves the quadratic polynomial with coefficients a, b, c for roots
|
|
|
|
* (zero crossings) and and returns the solutions in an array.
|
|
|
|
*
|
|
|
|
* a*x^2 + b*x + c = 0
|
|
|
|
*/
|
2011-07-09 04:50:47 -04:00
|
|
|
solveQuadratic: function(a, b, c, roots, tolerance) {
|
2012-10-22 18:21:33 -04:00
|
|
|
// Code ported over and adapted from Uintah library (MIT license).
|
2011-07-04 13:47:54 -04:00
|
|
|
// If problem is actually linear, return 0 or 1 easy roots
|
|
|
|
if (abs(a) < tolerance) {
|
2011-07-09 04:50:47 -04:00
|
|
|
if (abs(b) >= tolerance) {
|
|
|
|
roots[0] = -c / b;
|
|
|
|
return 1;
|
|
|
|
}
|
2012-10-22 18:21:33 -04:00
|
|
|
// If all the coefficients are 0, we have infinite solutions!
|
|
|
|
return abs(c) < tolerance ? -1 : 0; // Infinite or 0 solutions
|
2011-07-04 13:47:54 -04:00
|
|
|
}
|
|
|
|
var q = b * b - 4 * a * c;
|
|
|
|
if (q < 0)
|
2011-07-09 04:50:47 -04:00
|
|
|
return 0; // 0 solutions
|
2011-07-04 13:47:54 -04:00
|
|
|
q = sqrt(q);
|
2012-10-22 18:21:33 -04:00
|
|
|
a *= 2; // Prepare division by (2 * a)
|
2011-07-09 04:50:47 -04:00
|
|
|
var n = 0;
|
2012-10-22 18:21:33 -04:00
|
|
|
roots[n++] = (-b - q) / a;
|
|
|
|
if (q > 0)
|
|
|
|
roots[n++] = (-b + q) / a;
|
|
|
|
return n; // 1 or 2 solutions
|
2011-07-04 13:47:54 -04:00
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Solves the cubic polynomial with coefficients a, b, c, d for roots
|
|
|
|
* (zero crossings) and and returns the solutions in an array.
|
|
|
|
*
|
|
|
|
* a*x^3 + b*x^2 + c*x + d = 0
|
|
|
|
*/
|
2011-07-26 11:00:49 -04:00
|
|
|
solveCubic: function(a, b, c, d, roots, tolerance) {
|
2012-10-22 18:21:33 -04:00
|
|
|
// Code ported over and adapted from Uintah library (MIT license).
|
2011-07-05 11:03:49 -04:00
|
|
|
if (abs(a) < tolerance)
|
2011-07-26 11:00:49 -04:00
|
|
|
return Numerical.solveQuadratic(b, c, d, roots, tolerance);
|
2012-10-22 18:21:33 -04:00
|
|
|
// Normalize to form: x^3 + b x^2 + c x + d = 0:
|
2011-07-04 13:47:54 -04:00
|
|
|
b /= a;
|
|
|
|
c /= a;
|
|
|
|
d /= a;
|
|
|
|
// Compute discriminants
|
2012-10-22 18:21:33 -04:00
|
|
|
var bb = b * b,
|
|
|
|
p = 1 / 3 * (-1 / 3 * bb + c),
|
|
|
|
q = 1 / 2 * (2 / 27 * b * bb - 1 / 3 * b * c + d),
|
|
|
|
// Use Cardano's formula
|
|
|
|
ppp = p * p * p,
|
|
|
|
D = q * q + ppp;
|
|
|
|
// Substitute x = y - b/3 to eliminate quadric term: x^3 +px + q = 0
|
|
|
|
b /= 3;
|
|
|
|
if (abs(D) < tolerance) {
|
|
|
|
if (abs(q) < tolerance) { // One triple solution.
|
|
|
|
roots[0] = - b;
|
|
|
|
return 1;
|
|
|
|
} else { // One single and one double solution.
|
|
|
|
var u = cbrt(-q);
|
|
|
|
roots[0] = 2 * u - b;
|
|
|
|
roots[1] = - u - b;
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
} else if (D < 0) { // Casus irreducibilis: three real solutions
|
|
|
|
var phi = 1 / 3 * Math.acos(-q / sqrt(-ppp));
|
|
|
|
var t = 2 * sqrt(-p);
|
|
|
|
roots[0] = t * cos(phi) - b;
|
|
|
|
roots[1] = - t * cos(phi + PI / 3) - b;
|
|
|
|
roots[2] = - t * cos(phi - PI / 3) - b;
|
|
|
|
return 3;
|
|
|
|
} else { // One real solution
|
|
|
|
D = sqrt(D);
|
|
|
|
roots[0] = cbrt(D - q) - cbrt(D + q) - b;
|
|
|
|
return 1;
|
2011-07-04 13:47:54 -04:00
|
|
|
}
|
2011-04-26 06:30:29 -04:00
|
|
|
}
|
2011-03-19 20:04:33 -04:00
|
|
|
};
|
2011-03-03 11:32:39 -05:00
|
|
|
};
|