paper.js/src/util/Numerical.js

127 lines
3.3 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js
*
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
* http://scriptographer.org/
*
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* All rights reserved. See LICENSE file for details.
*/
2011-03-06 19:21:04 -05:00
var Numerical = new function() {
2011-03-06 19:40:48 -05:00
var abscissa = [
-0.5773502692, 0.5773502692,
2011-03-06 19:38:33 -05:00
-0.7745966692, 0.7745966692, 0,
-0.8611363116, 0.8611363116, -0.3399810436, 0.3399810436,
2011-03-06 19:38:33 -05:00
-0.9061798459, 0.9061798459, -0.5384693101, 0.5384693101, 0.0000000000,
-0.9324695142, 0.9324695142, -0.6612093865, 0.6612093865, -0.2386191861, 0.2386191861,
2011-03-06 19:38:33 -05:00
-0.9491079123, 0.9491079123, -0.7415311856, 0.7415311856, -0.4058451514, 0.4058451514, 0.0000000000,
-0.9602898565, 0.9602898565, -0.7966664774, 0.7966664774, -0.5255324099, 0.5255324099, -0.1834346425, 0.1834346425
];
var weight = [
2011-03-06 19:38:33 -05:00
1, 1,
0.5555555556, 0.5555555556, 0.8888888888,
0.3478548451, 0.3478548451, 0.6521451549, 0.6521451549,
0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705, 0.5688888888,
0.1713244924, 0.1713244924, 0.3607615730, 0.3607615730, 0.4679139346, 0.4679139346,
0.1294849662, 0.1294849662, 0.2797053915, 0.2797053915, 0.3818300505, 0.3818300505, 0.4179591837,
0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345, 0.3137066459, 0.3137066459, 0.3626837834, 0.3626837834
];
return {
2011-03-06 19:17:32 -05:00
TOLERANCE: 10e-6,
2011-03-06 19:40:48 -05:00
/**
* Gauss-Legendre Numerical Integration, ported from Singularity:
*
* Copyright (c) 2006-2007, Jim Armstrong (www.algorithmist.net)
* All Rights Reserved.
*/
integrate: function(f, a, b, n) {
n = Math.min(Math.max(n, 2), 8);
var l = n == 2 ? 0 : n * (n - 1) / 2 - 1,
sum = 0,
mul = 0.5 * (b - a),
ab2 = mul + a;
for(var i = 0; i < n; i++)
sum += f(ab2 + mul * abscissa[l + i]) * weight[l + i];
return mul * sum;
},
2011-03-06 19:40:48 -05:00
/**
* Van WijngaardenDekkerBrent method for root finding, implementation
* based on Numerical Recipes in C
*/
findRoot: function(f, a, b, n, tol) {
var c = b, d = 0, e = 0,
fa = f(a),
fb = f(b),
fc = fb;
for (var i = 0; i < n; i++) {
if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) {
c = a;
fc = fa;
e = d = b - a;
}
if (Math.abs(fc) < Math.abs(fb)) {
a = b;
b = c;
c = a;
fa = fb;
fb = fc;
fc = fa;
}
2011-03-06 19:17:32 -05:00
var tol1 = 2 * Number.MIN_VALUE * Math.abs(b) + 0.5 * tol,
xm = 0.5 * (c - b);
if (Math.abs(xm) <= tol1 || fb == 0) {
return b;
}
if (Math.abs(e) >= tol1 && Math.abs(fa) > Math.abs(fb)) {
var p, q, r,
s = fb / fa;
if (a == c) {
p = 2 * xm * s;
q = 1 - s;
} else {
q = fa / fc;
r = fb / fc;
p = s * (2 * xm * q * (q - r) - (b - a) * (r - 1));
q = (q - 1) * (r - 1) * (s - 1);
}
if (p > 0)
q = -q;
p = Math.abs(p);
var min1 = 3 * xm * q - Math.abs(tol1 * q),
min2 = Math.abs(e * q);
if (2 * p < (min1 < min2 ? min1 : min2)) {
e = d;
d = p / q;
} else {
d = xm;
e = d;
}
} else {
d = xm;
e = d;
}
a = b;
fa = fb;
if (Math.abs(d) > tol1)
b += d;
else
b += xm >= 0 ? Math.abs(tol1) : -Math.abs(tol1);
fb = f(b);
}
return b;
}
}
};