2011-03-06 18:24:33 -05:00
|
|
|
var MathUtils = new function() {
|
|
|
|
var maxDepth = 53; // MANT_DIGITS: 64 bit: 53 digits, 32 bit: 24 digits
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
// Gauss-Legendre Numerical Integration, a Gauss.as port from Singularity:
|
|
|
|
//
|
|
|
|
// Copyright (c) 2006-2007, Jim Armstrong (www.algorithmist.net)
|
|
|
|
// All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Simplified and further optimised by Juerg Lehni.
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
var abscissa = [
|
|
|
|
-0.5773502692, 0.5773502692,
|
|
|
|
-0.7745966692, 0.7745966692, 0,
|
|
|
|
-0.8611363116, 0.8611363116, -0.3399810436, 0.3399810436,
|
|
|
|
-0.9061798459, 0.9061798459, -0.5384693101, 0.5384693101, 0.0000000000,
|
|
|
|
-0.9324695142, 0.9324695142, -0.6612093865, 0.6612093865, -0.2386191861, 0.2386191861,
|
|
|
|
-0.9491079123, 0.9491079123, -0.7415311856, 0.7415311856, -0.4058451514, 0.4058451514, 0.0000000000,
|
|
|
|
-0.9602898565, 0.9602898565, -0.7966664774, 0.7966664774, -0.5255324099, 0.5255324099, -0.1834346425, 0.1834346425
|
|
|
|
];
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
var weight = [
|
|
|
|
1, 1,
|
|
|
|
0.5555555556, 0.5555555556, 0.8888888888,
|
|
|
|
0.3478548451, 0.3478548451, 0.6521451549, 0.6521451549,
|
|
|
|
0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705, 0.5688888888,
|
|
|
|
0.1713244924, 0.1713244924, 0.3607615730, 0.3607615730, 0.4679139346, 0.4679139346,
|
|
|
|
0.1294849662, 0.1294849662, 0.2797053915, 0.2797053915, 0.3818300505, 0.3818300505, 0.4179591837,
|
|
|
|
0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345, 0.3137066459, 0.3137066459, 0.3626837834, 0.3626837834
|
|
|
|
];
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
return {
|
|
|
|
EPSILON: Math.pow(2, -maxDepth + 1),
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
gauss: function(f, a, b, n) {
|
|
|
|
n = Math.min(Math.max(n, 2), 8);
|
|
|
|
|
|
|
|
var l = n == 2 ? 0 : n * (n - 1) / 2 - 1,
|
|
|
|
sum = 0,
|
|
|
|
mul = 0.5 * (b - a),
|
|
|
|
ab2 = mul + a;
|
|
|
|
for(var i = 0; i < n; i++)
|
|
|
|
sum += f(ab2 + mul * abscissa[l + i]) * weight[l + i];
|
2011-02-26 11:26:54 -05:00
|
|
|
|
2011-03-06 18:24:33 -05:00
|
|
|
return mul * sum;
|
2011-02-26 11:26:54 -05:00
|
|
|
}
|
|
|
|
}
|
2011-03-03 11:32:39 -05:00
|
|
|
};
|