2011-02-13 21:05:54 -05:00
|
|
|
Path = PathItem.extend(new function() {
|
2011-02-17 07:36:40 -05:00
|
|
|
var styleNames = {
|
|
|
|
fillColor: 'fillStyle',
|
|
|
|
strokeColor: 'strokeStyle',
|
|
|
|
strokeWidth: 'lineWidth',
|
|
|
|
strokeJoin: 'lineJoin',
|
|
|
|
strokeCap: 'lineCap',
|
|
|
|
miterLimit: 'miterLimit'
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Solves a tri-diagonal system for one of coordinates (x or y) of first
|
|
|
|
* bezier control points.
|
|
|
|
*
|
|
|
|
* @param rhs right hand side vector.
|
|
|
|
* @return Solution vector.
|
|
|
|
*/
|
|
|
|
var getFirstControlPoints = function(rhs) {
|
|
|
|
var n = rhs.length;
|
|
|
|
var x = []; // Solution vector.
|
|
|
|
var tmp = []; // Temporary workspace.
|
|
|
|
var b = 2;
|
|
|
|
x[0] = rhs[0] / b;
|
|
|
|
// Decomposition and forward substitution.
|
|
|
|
for (var i = 1; i < n; i++) {
|
|
|
|
tmp[i] = 1 / b;
|
|
|
|
b = (i < n - 1 ? 4.0 : 2.0) - tmp[i];
|
|
|
|
x[i] = (rhs[i] - x[i - 1]) / b;
|
|
|
|
}
|
|
|
|
// Back-substitution.
|
|
|
|
for (var i = 1; i < n; i++) {
|
|
|
|
x[n - i - 1] -= tmp[n - i] * x[n - i];
|
|
|
|
}
|
|
|
|
|
|
|
|
return x;
|
|
|
|
};
|
2011-02-13 21:05:54 -05:00
|
|
|
|
|
|
|
return {
|
2011-02-17 07:36:40 -05:00
|
|
|
beans: true,
|
|
|
|
|
|
|
|
initialize: function(/* segments */) {
|
|
|
|
this.base();
|
|
|
|
this.closed = false;
|
|
|
|
this._segments = [];
|
|
|
|
// Support both passing of segments as array or arguments
|
|
|
|
// If it is an array, it can also be a description of a point, so
|
|
|
|
// check its first entry for object as well
|
|
|
|
var segments = arguments[0];
|
|
|
|
if (!segments || !Array.isArray(segments)
|
|
|
|
|| typeof segments[0] != 'object')
|
|
|
|
segments = arguments;
|
|
|
|
for (var i = 0, l = segments.length; i < l; i++)
|
|
|
|
this.addSegment(new Segment(segments[i]));
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The segments contained within the path.
|
|
|
|
*/
|
|
|
|
getSegments: function() {
|
|
|
|
return this._segments;
|
|
|
|
},
|
|
|
|
|
|
|
|
setSegments: function(segments) {
|
|
|
|
this._segments = segments;
|
|
|
|
},
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The bounding rectangle of the item excluding stroke width.
|
|
|
|
*/
|
|
|
|
getBounds: function() {
|
|
|
|
// Code ported from:
|
|
|
|
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
|
|
|
|
var segments = this._segments;
|
|
|
|
var first = segments[0];
|
|
|
|
if (!first)
|
|
|
|
return null;
|
|
|
|
var p0 = first.point, prev = first;
|
|
|
|
var min = {
|
|
|
|
x: p0.x,
|
|
|
|
y: p0.y
|
|
|
|
};
|
|
|
|
var max = {
|
|
|
|
x: p0.x,
|
|
|
|
y: p0.y
|
|
|
|
}
|
|
|
|
var coords = ['x', 'y'];
|
|
|
|
function processSegment(segment) {
|
|
|
|
var p1 = p0.add(prev.handleOut);
|
|
|
|
var p3 = segment.point;
|
|
|
|
var p2 = p3.add(segment.handleIn);
|
|
|
|
for (var i = 0; i < 2; i++) {
|
|
|
|
var coord = coords[i];
|
|
|
|
var v0 = p0[coord], v1 = p1[coord],
|
|
|
|
v2 = p2[coord], v3 = p3[coord];
|
|
|
|
|
|
|
|
function bounds(value) {
|
|
|
|
if (value < min[coord]) {
|
|
|
|
min[coord] = value;
|
|
|
|
} else if (value > max[coord]) {
|
|
|
|
max[coord] = value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bounds(v3);
|
|
|
|
|
|
|
|
function f(t) {
|
|
|
|
var omt = 1 - t;
|
|
|
|
return omt * omt * omt * v0
|
|
|
|
+ 3 * omt * omt * t * v1
|
|
|
|
+ 3 * omt * t * t * v2
|
|
|
|
+ t * t * t * v3;
|
|
|
|
}
|
|
|
|
|
|
|
|
var b = 6 * v0 - 12 * v1 + 6 * v2;
|
|
|
|
var a = -3 * v0 + 9 * v1 - 9 * v2 + 3 * v3;
|
|
|
|
var c = 3 * v1 - 3 * v0;
|
|
|
|
|
|
|
|
if (a == 0) {
|
|
|
|
if (b == 0)
|
|
|
|
continue;
|
|
|
|
var t = -c / b;
|
|
|
|
if (0 < t && t < 1)
|
|
|
|
bounds(f(t));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
var b2ac = b * b - 4 * c * a;
|
|
|
|
if (b2ac < 0)
|
|
|
|
continue;
|
|
|
|
var t1 = (-b + Math.sqrt(b2ac)) / (2 * a);
|
|
|
|
if (0 < t1 && t1 < 1)
|
|
|
|
bounds(f(t1));
|
|
|
|
var t2 = (-b - Math.sqrt(b2ac)) / (2 * a);
|
|
|
|
if (0 < t2 && t2 < 1)
|
|
|
|
bounds(f(t2));
|
|
|
|
}
|
|
|
|
p0 = p3;
|
|
|
|
prev = segment;
|
|
|
|
}
|
|
|
|
for (var i = 1, l = segments.length; i < l; i++)
|
|
|
|
processSegment(segments[i]);
|
|
|
|
if (this.closed)
|
|
|
|
processSegment(first);
|
|
|
|
return new Rectangle(min.x, min.y, max.x - min.x , max.y - min.y);
|
|
|
|
},
|
|
|
|
|
|
|
|
transformContent: function(matrix, flags) {
|
|
|
|
for (var i = 0, l = this._segments.length; i < l; i++) {
|
|
|
|
var segment = this._segments[i];
|
|
|
|
// We need to convert handles to absolute coordinates in order
|
|
|
|
// to transform them.
|
|
|
|
// TODO: Is transformation even required if they are [0, 0]?
|
|
|
|
// TODO: Can we optimise this by using the matrix.transform()
|
|
|
|
// version that takes arrays as in and output values, and just
|
|
|
|
// modifying points rather than producing new ones? This would
|
|
|
|
// consume less memory for sure.
|
|
|
|
var point = segment.point;
|
|
|
|
var handleIn = segment.handleIn.add(point);
|
|
|
|
var handleOut = segment.handleOut.add(point);
|
|
|
|
point = matrix.transform(point);
|
|
|
|
segment.point = point;
|
|
|
|
// Convert handles back to relative values after transformation
|
|
|
|
segment.handleIn = matrix.transform(handleIn).subtract(point);
|
|
|
|
segment.handleOut = matrix.transform(handleOut).subtract(point);
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
addSegment: function(segment) {
|
|
|
|
segment.path = this;
|
|
|
|
this._segments.push(segment);
|
|
|
|
},
|
|
|
|
|
|
|
|
add: function() {
|
|
|
|
var segment = Segment.read(arguments);
|
|
|
|
if (segment)
|
|
|
|
this.addSegment(segment);
|
|
|
|
},
|
|
|
|
|
|
|
|
insert: function(index, segment) {
|
|
|
|
this._segments.splice(index, 0, new Segment(segment));
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* PostScript-style drawing commands
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Helper method that returns the current segment and checks if we need to
|
|
|
|
* execute a moveTo() command first.
|
|
|
|
*/
|
|
|
|
getCurrentSegment: function() {
|
|
|
|
if (this._segments.length == 0)
|
|
|
|
throw('Use a moveTo() command first');
|
|
|
|
return this._segments[this._segments.length - 1];
|
|
|
|
},
|
|
|
|
|
|
|
|
moveTo: function() {
|
|
|
|
var segment = Segment.read(arguments);
|
|
|
|
if (segment && !this._segments.length)
|
|
|
|
this.addSegment(segment);
|
|
|
|
},
|
|
|
|
|
|
|
|
lineTo: function() {
|
|
|
|
var segment = Segment.read(arguments);
|
|
|
|
if (segment && this._segments.length)
|
|
|
|
this.addSegment(segment);
|
2011-02-13 21:05:54 -05:00
|
|
|
},
|
2011-02-17 07:36:40 -05:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds a cubic bezier curve to the path, defined by two handles and a to
|
|
|
|
* point.
|
|
|
|
*/
|
|
|
|
cubicCurveTo: function(handle1, handle2, to) {
|
|
|
|
// First modify the current segment:
|
|
|
|
var current = this.currentSegment;
|
|
|
|
// Convert to relative values:
|
|
|
|
current.handleOut = new Point(
|
|
|
|
handle1.x - current.point.x,
|
|
|
|
handle1.y - current.point.y);
|
|
|
|
// And add the new segment, with handleIn set to c2
|
|
|
|
this.addSegment(
|
|
|
|
new Segment(to, handle2.subtract(to), new Point())
|
|
|
|
);
|
|
|
|
},
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds a quadratic bezier curve to the path, defined by a handle and a to
|
|
|
|
* point.
|
|
|
|
*/
|
|
|
|
quadraticCurveTo: function(handle, to) {
|
|
|
|
// This is exact:
|
|
|
|
// If we have the three quad points: A E D,
|
|
|
|
// and the cubic is A B C D,
|
|
|
|
// B = E + 1/3 (A - E)
|
|
|
|
// C = E + 1/3 (D - E)
|
|
|
|
var current = this.currentSegment;
|
|
|
|
var x1 = current.point.x;
|
|
|
|
var y1 = current.point.y;
|
|
|
|
this.cubicCurveTo(
|
|
|
|
handle.add(current.point.subtract(handle).multiply(1/3)),
|
|
|
|
handle.add(to.subtract(handle).multiply(1/3)),
|
|
|
|
to
|
|
|
|
);
|
|
|
|
},
|
|
|
|
|
|
|
|
curveTo: function(through, to, parameter) {
|
|
|
|
through = new Point(through);
|
|
|
|
to = new Point(to);
|
|
|
|
if (parameter == null)
|
|
|
|
parameter = 0.5;
|
|
|
|
var current = this.currentSegment.point;
|
|
|
|
// handle = (through - (1 - t)^2 * current - t^2 * to) / (2 * (1 - t) * t)
|
|
|
|
var t1 = 1 - parameter;
|
|
|
|
var handle = through.subtract(
|
|
|
|
current.multiply(t1 * t1)).subtract(
|
|
|
|
to.multiply(parameter * parameter)).divide(
|
|
|
|
2.0 * parameter * t1);
|
|
|
|
if (handle.isNaN())
|
|
|
|
throw new Error(
|
|
|
|
"Cannot put a curve through points with parameter="
|
|
|
|
+ parameter);
|
|
|
|
this.quadraticCurveTo(handle, to);
|
|
|
|
},
|
|
|
|
|
|
|
|
arcTo: function(to, clockwise) {
|
|
|
|
var through, to;
|
|
|
|
// Get the start point:
|
|
|
|
var current = this.currentSegment;
|
|
|
|
if (arguments[1] && typeof arguments[1] != 'boolean') {
|
|
|
|
through = new Point(arguments[0]);
|
|
|
|
to = new Point(arguments[1]);
|
|
|
|
} else {
|
|
|
|
if (clockwise === null)
|
|
|
|
clockwise = true;
|
|
|
|
var middle = current.point.add(to).divide(2);
|
|
|
|
var step = middle.subtract(current.point);
|
|
|
|
through = clockwise
|
|
|
|
? middle.subtract(-step.y, step.x)
|
|
|
|
: middle.add(-step.y, step.x);
|
|
|
|
}
|
|
|
|
|
|
|
|
var x1 = current.point.x, x2 = through.x, x3 = to.x;
|
|
|
|
var y1 = current.point.y, y2 = through.y, y3 = to.y;
|
|
|
|
|
|
|
|
var f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2
|
|
|
|
- y1 * y3 + y1 * y2;
|
|
|
|
var g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1;
|
|
|
|
var m = g == 0 ? 0 : f / g;
|
|
|
|
|
|
|
|
var c = (m * y2) - x2 - x1 - (m * y1);
|
|
|
|
var d = (m * x1) - y1 - y2 - (x2 * m);
|
|
|
|
var e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1);
|
|
|
|
|
|
|
|
var centerX = -c / 2;
|
|
|
|
var centerY = -d / 2;
|
|
|
|
var radius = Math.sqrt(centerX * centerX + centerY * centerY - e);
|
|
|
|
|
|
|
|
// Note: reversing the Y equations negates the angle to adjust
|
|
|
|
// for the upside down coordinate system.
|
|
|
|
var angle = Math.atan2(centerY - y1, x1 - centerX);
|
|
|
|
var middle = Math.atan2(centerY - y2, x2 - centerX);
|
|
|
|
var extent = Math.atan2(centerY - y3, x3 - centerX);
|
|
|
|
|
|
|
|
var diff = middle - angle;
|
|
|
|
if (diff < -Math.PI)
|
|
|
|
diff += Math.PI * 2;
|
|
|
|
else if (diff > Math.PI)
|
|
|
|
diff -= Math.PI * 2;
|
2011-02-13 21:05:54 -05:00
|
|
|
|
2011-02-17 07:36:40 -05:00
|
|
|
extent -= angle;
|
|
|
|
if (extent <= 0.0)
|
|
|
|
extent += Math.PI * 2;
|
|
|
|
|
|
|
|
if (diff < 0) extent = Math.PI * 2 - extent;
|
|
|
|
else extent = -extent;
|
|
|
|
angle = -angle;
|
|
|
|
|
|
|
|
var ext = Math.abs(extent);
|
|
|
|
var arcSegs;
|
|
|
|
if (ext >= 2 * Math.PI) arcSegs = 4;
|
|
|
|
else arcSegs = Math.ceil(ext * 2 / Math.PI);
|
|
|
|
|
|
|
|
var inc = extent;
|
|
|
|
if (inc > 2 * Math.PI) inc = 2 * Math.PI;
|
|
|
|
else if (inc < -2 * Math.PI) inc = -2 * Math.PI;
|
|
|
|
inc /= arcSegs;
|
|
|
|
|
|
|
|
var halfInc = inc / 2;
|
|
|
|
var z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc));
|
|
|
|
|
|
|
|
for (var i = 0; i <= arcSegs; i++) {
|
|
|
|
var relx = Math.cos(angle);
|
|
|
|
var rely = Math.sin(angle);
|
|
|
|
var pt = new Point(centerX + relx * radius,
|
|
|
|
centerY + rely * radius);
|
|
|
|
var out;
|
|
|
|
if (i == arcSegs) out = null;
|
|
|
|
else out = new Point(centerX + (relx - z * rely) * radius - pt.x,
|
|
|
|
centerY + (rely + z * relx) * radius - pt.y);
|
|
|
|
if (i == 0) {
|
|
|
|
// Modify startSegment
|
|
|
|
current.handleOut = out;
|
|
|
|
} else {
|
|
|
|
// Add new Segment
|
|
|
|
var inPoint = new Point(
|
|
|
|
centerX + (relx + z * rely) * radius - pt.x,
|
|
|
|
centerY + (rely - z * relx) * radius - pt.y);
|
|
|
|
this.addSegment(new Segment(pt, inPoint, out));
|
|
|
|
}
|
|
|
|
angle += inc;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
lineBy: function() {
|
|
|
|
var vector = Point.read(arguments);
|
|
|
|
if (vector) {
|
|
|
|
var current = this.currentSegment;
|
|
|
|
this.lineTo(current.point.add(vector));
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
smooth: function() {
|
|
|
|
var segments = this._segments;
|
|
|
|
|
|
|
|
// This code is based on the work by Oleg V. Polikarpotchkin,
|
|
|
|
// http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry
|
|
|
|
// It was extended to support closed paths by averaging overlapping
|
|
|
|
// beginnings and ends. The result of this approach is very close to
|
|
|
|
// Polikarpotchkin's closed curve solution, but reuses the same
|
|
|
|
// algorithm as for open paths, and is probably executing faster as
|
|
|
|
// well, so it is preferred.
|
|
|
|
var size = segments.length;
|
|
|
|
if (size <= 2)
|
|
|
|
return;
|
|
|
|
|
|
|
|
var n = size;
|
|
|
|
// Add overlapping ends for averaging handles in closed paths
|
|
|
|
var overlap;
|
|
|
|
if (this.closed) {
|
|
|
|
// Overlap up to 4 points since averaging beziers affect the 4
|
|
|
|
// neighboring points
|
|
|
|
overlap = Math.min(size, 4);
|
|
|
|
n += Math.min(size, overlap) * 2;
|
|
|
|
} else {
|
|
|
|
overlap = 0;
|
|
|
|
}
|
|
|
|
var knots = [];
|
|
|
|
for (var i = 0; i < size; i++)
|
|
|
|
knots[i + overlap] = segments[i].point;
|
|
|
|
if (this.closed) {
|
|
|
|
// If we're averaging, add the 4 last points again at the beginning,
|
|
|
|
// and the 4 first ones at the end.
|
|
|
|
for (var i = 0; i < overlap; i++) {
|
|
|
|
knots[i] = segments[i + size - overlap].point;
|
|
|
|
knots[i + size + overlap] = segments[i].point;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
// Calculate first Bezier control points
|
|
|
|
// Right hand side vector
|
|
|
|
var rhs = [];
|
|
|
|
|
|
|
|
// Set right hand side X values
|
|
|
|
for (var i = 1; i < n - 1; i++)
|
|
|
|
rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
|
|
|
|
rhs[0] = knots[0].x + 2 * knots[1].x;
|
|
|
|
rhs[n - 1] = 3 * knots[n - 1].x;
|
|
|
|
// Get first control points X-values
|
|
|
|
var x = getFirstControlPoints(rhs);
|
|
|
|
|
|
|
|
// Set right hand side Y values
|
|
|
|
for (var i = 1; i < n - 1; i++)
|
|
|
|
rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
|
|
|
|
rhs[0] = knots[0].y + 2 * knots[1].y;
|
|
|
|
rhs[n - 1] = 3 * knots[n - 1].y;
|
|
|
|
// Get first control points Y-values
|
|
|
|
var y = getFirstControlPoints(rhs);
|
|
|
|
|
|
|
|
if (this.closed) {
|
|
|
|
// Do the actual averaging simply by linearly fading between the
|
|
|
|
// overlapping values.
|
|
|
|
for (var i = 0, j = size; i < overlap; i++, j++) {
|
|
|
|
var f1 = (i / overlap);
|
|
|
|
var f2 = 1 - f1;
|
|
|
|
// Beginning
|
|
|
|
x[j] = x[i] * f1 + x[j] * f2;
|
|
|
|
y[j] = y[i] * f1 + y[j] * f2;
|
|
|
|
// End
|
|
|
|
var ie = i + overlap, je = j + overlap;
|
|
|
|
x[je] = x[ie] * f2 + x[je] * f1;
|
|
|
|
y[je] = y[ie] * f2 + y[je] * f1;
|
|
|
|
}
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
var handleIn = null;
|
|
|
|
// Now set the calculated handles
|
|
|
|
for (var i = overlap; i <= n - overlap; i++) {
|
|
|
|
var segment = segments[i - overlap];
|
|
|
|
if (handleIn != null)
|
|
|
|
segment.handleIn = handleIn.subtract(segment.point);
|
|
|
|
if (i < n) {
|
|
|
|
segment.handleOut =
|
|
|
|
new Point(x[i], y[i]).subtract(segment.point);
|
|
|
|
if (i < n - 1)
|
|
|
|
handleIn = new Point(
|
|
|
|
2 * knots[i + 1].x - x[i + 1],
|
|
|
|
2 * knots[i + 1].y - y[i + 1]);
|
|
|
|
else
|
|
|
|
handleIn = new Point(
|
|
|
|
(knots[n].x + x[n - 1]) / 2,
|
|
|
|
(knots[n].y + y[n - 1]) / 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (closed && handleIn != null) {
|
|
|
|
var segment = this._segments[0];
|
|
|
|
segment.handleIn = handleIn.subtract(segment.point);
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
curveBy: function(throughVector, toVector, parameter) {
|
|
|
|
throughVector = Point.read(throughVector);
|
|
|
|
toVector = Point.read(toVector);
|
|
|
|
var current = this.currentSegment.point;
|
|
|
|
this.curveTo(current.add(throughVector), current.add(toVector), parameter);
|
|
|
|
},
|
|
|
|
|
|
|
|
arcBy: function(throughVector, toVector) {
|
|
|
|
throughVector = Point.read(throughVector);
|
|
|
|
toVector = Point.read(toVector);
|
|
|
|
var current = this.currentSegment.point;
|
|
|
|
this.arcBy(current.add(throughVector), current.add(toVector));
|
|
|
|
},
|
|
|
|
|
|
|
|
setCtxStyles: function(ctx) {
|
|
|
|
for (var i in styleNames) {
|
|
|
|
var style;
|
|
|
|
if (style = this[i])
|
|
|
|
ctx[styleNames[i]] = style;
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
draw: function(ctx, compound) {
|
|
|
|
if (!this.visible) return;
|
|
|
|
if(!compound)
|
|
|
|
ctx.beginPath();
|
|
|
|
var cp1;
|
|
|
|
for (var i = 0, l = this._segments.length; i < l; i++) {
|
|
|
|
var segment = this._segments[i];
|
|
|
|
var point = segment.point;
|
|
|
|
var handleIn = segment.handleIn.add(point);
|
|
|
|
var handleOut = segment.handleOut.add(point);
|
|
|
|
if (i == 0) {
|
|
|
|
ctx.moveTo(point.x, point.y);
|
|
|
|
} else {
|
|
|
|
ctx.bezierCurveTo(cp1.x, cp1.y, handleIn.x, handleIn.y,
|
|
|
|
point.x, point.y);
|
|
|
|
}
|
|
|
|
cp1 = handleOut;
|
|
|
|
}
|
|
|
|
if (this.closed && this._segments.length > 1) {
|
|
|
|
var segment = this._segments[0];
|
|
|
|
var point = segment.point;
|
|
|
|
var handleIn = segment.handleIn.add(point);
|
|
|
|
ctx.bezierCurveTo(cp1.x, cp1.y, handleIn.x, handleIn.y,
|
|
|
|
point.x, point.y);
|
|
|
|
ctx.closePath();
|
|
|
|
}
|
|
|
|
if(!compound) {
|
|
|
|
this.setCtxStyles(ctx);
|
|
|
|
if (this.fillColor) ctx.fill();
|
|
|
|
if (this.strokeColor) ctx.stroke();
|
|
|
|
}
|
2011-02-13 21:05:54 -05:00
|
|
|
}
|
2011-02-07 13:28:09 -05:00
|
|
|
}
|
2011-02-13 11:26:24 -05:00
|
|
|
});
|