2011-03-03 11:32:39 -05:00
|
|
|
var MathUtils = {
|
2011-02-26 11:26:54 -05:00
|
|
|
// TODO: 64 bit: 53 digits, 32 bit: 24 digits
|
|
|
|
// TODO: Naming? What is MANT standing for?
|
|
|
|
MANT_DIGITS: 53,
|
|
|
|
EPSILON: Math.pow(2, -52),
|
|
|
|
|
|
|
|
// Compute a numerical approximation to an integral via adaptive Simpson's Rule
|
|
|
|
// This routine ignores underflow.
|
|
|
|
|
|
|
|
// Returns approximate value of the integral if successful.
|
|
|
|
// f: Pointer to function to be integrated.
|
|
|
|
// a, b: Lower, upper limits of integration.
|
|
|
|
// accuracy: Desired relative accuracy of integral,
|
|
|
|
// try to make |error| <= accuracy*abs(integral).
|
|
|
|
// dxmax: Maximum limit on the width of a subinterval
|
|
|
|
// For periodic functions, dxmax should be
|
|
|
|
// set to the period or smaller to prevent
|
|
|
|
// premature convergence of Simpson's rule.
|
|
|
|
simpson: function(f, a, b, accuracy, dxmax) {
|
|
|
|
var table = new Array(MathUtils.MANT_DIGITS);
|
|
|
|
var p = table[0] = {
|
|
|
|
left: true,
|
|
|
|
psum: 0
|
|
|
|
};
|
|
|
|
var index = 0,
|
|
|
|
success = true,
|
|
|
|
alpha = a,
|
|
|
|
da = b - a,
|
|
|
|
fv0 = f(alpha),
|
|
|
|
fv1,
|
|
|
|
fv2 = f(alpha + 0.5 * da),
|
|
|
|
fv3,
|
|
|
|
fv4 = f(alpha + da),
|
|
|
|
fv5,
|
|
|
|
wt = da * (1 / 6),
|
|
|
|
est = wt * (fv0 + 4 * fv2 + fv4),
|
|
|
|
area = est;
|
|
|
|
|
|
|
|
// Have estimate est of integral on (alpha, alpha+da).
|
|
|
|
// Bisect and compute estimates on left and right half intervals.
|
|
|
|
// integral is the best value for the integral.
|
|
|
|
for (;;) {
|
|
|
|
var dx = 0.5 * da,
|
|
|
|
arg = alpha + 0.5 * dx;
|
|
|
|
fv1 = f(arg);
|
|
|
|
fv3 = f(arg + dx);
|
|
|
|
var wt = dx * (1 / 6),
|
|
|
|
estl = wt * (fv0 + 4 * fv1 + fv2),
|
|
|
|
estr = wt * (fv2 + 4 * fv3 + fv4),
|
|
|
|
integral = estl + estr,
|
|
|
|
diff = est - integral;
|
|
|
|
area -= diff;
|
|
|
|
|
|
|
|
if (index >= table.length)
|
|
|
|
success = false;
|
|
|
|
if (!success || (Math.abs(diff) <= accuracy * Math.abs(area) && da <= dxmax)) {
|
|
|
|
// Accept approximate integral.
|
|
|
|
// If it was a right interval, add results to finish at this level.
|
|
|
|
// If it was a left interval, process right interval.
|
|
|
|
for (;;) {
|
|
|
|
if (!p.left) { // process right-half interval
|
|
|
|
alpha += da;
|
|
|
|
p.left = true;
|
|
|
|
p.psum = integral;
|
|
|
|
fv0 = p.f1t;
|
|
|
|
fv2 = p.f2t;
|
|
|
|
fv4 = p.f3t;
|
|
|
|
da = p.dat;
|
|
|
|
est = p.estr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
integral += p.psum;
|
|
|
|
if (--index <= 0)
|
|
|
|
return success ? integral : null;
|
|
|
|
p = table[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Raise level and store information for processing right-half interval.
|
|
|
|
p = table[++index] = {
|
|
|
|
left: false,
|
|
|
|
f1t: fv2,
|
|
|
|
f2t: fv3,
|
|
|
|
f3t: fv4,
|
|
|
|
dat: dx,
|
|
|
|
estr: estr
|
|
|
|
};
|
|
|
|
da = dx;
|
|
|
|
est = estl;
|
|
|
|
fv4 = fv2;
|
|
|
|
fv2 = fv1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
|
|
|
|
// Use adaptive Simpson integration to determine the upper limit of
|
|
|
|
// integration required to make the definite integral of a continuous
|
|
|
|
// non-negative function close to a user specified sum.
|
|
|
|
// This routine ignores underflow.
|
|
|
|
// integral: Given value for the integral.
|
|
|
|
// f: Pointer to function to be integrated.
|
|
|
|
// a, b: Lower, upper limits of integration (a <= b).
|
|
|
|
// The value of b provided on entry is used
|
|
|
|
// as an initial guess; somewhat faster if the
|
|
|
|
// given value is an underestimation.
|
|
|
|
// accuracy: Desired relative accuracy of b.
|
|
|
|
// Try to make |integral-area| <= accuracy*integral.
|
|
|
|
// area: Computed integral of f(x) on [a,b].
|
|
|
|
// dxmin: Lower limit on sampling width.
|
|
|
|
// dxmax: Maximum limit on the width of a subinterval
|
|
|
|
// For periodic functions, dxmax should be
|
|
|
|
// set to the period or smaller to prevent
|
|
|
|
// premature convergence of Simpson's rule.
|
|
|
|
unsimpson: function(integral, f, a, b, accuracy, area, dxmin, dxmax) {
|
|
|
|
var table = new Array(MathUtils.MANT_DIGITS);
|
|
|
|
var p = table[0] = {
|
|
|
|
psum: 0
|
|
|
|
};
|
|
|
|
var index = 0,
|
|
|
|
alpha = a,
|
|
|
|
parea = 0,
|
|
|
|
pdiff = 0,
|
|
|
|
fv0, fv1, fv2, fv3, fv4, fv5;
|
|
|
|
for (;;) {
|
|
|
|
p.left = true;
|
|
|
|
var da = b - alpha;
|
|
|
|
fv0 = f(alpha);
|
|
|
|
fv2 = f(alpha + 0.5 * da);
|
|
|
|
fv4 = f(alpha + da);
|
|
|
|
var wt = da * (1 / 6),
|
|
|
|
est = area = wt * (fv0 + 4 * fv2 + fv4);
|
|
|
|
// Have estimate est of integral on (alpha, alpha+da).
|
|
|
|
// Bisect and compute estimates on left and right half intervals.
|
|
|
|
// Sum is better value for integral.
|
|
|
|
var cont = true;
|
|
|
|
while(cont) {
|
|
|
|
var dx = 0.5 * da,
|
|
|
|
arg = alpha + 0.5 * dx;
|
|
|
|
fv1 = f(arg);
|
|
|
|
fv3 = f(arg + dx);
|
|
|
|
var wt = dx * (1 / 6),
|
|
|
|
estl = wt * (fv0 + 4 * fv1 + fv2),
|
|
|
|
estr = wt * (fv2 + 4 * fv3 + fv4),
|
|
|
|
sum = estl + estr,
|
|
|
|
diff = est - sum;
|
|
|
|
area = parea + sum;
|
|
|
|
var b2 = alpha + da;
|
|
|
|
if (Math.abs(Math.abs(integral - area) - Math.abs(pdiff)) + Math.abs(diff) <= fv4 * accuracy * (b2 - a)) {
|
|
|
|
return { b: b2, area: area };
|
|
|
|
}
|
|
|
|
if (Math.abs(integral - area) > Math.abs(pdiff + diff)) {
|
|
|
|
if (integral <= area) {
|
|
|
|
index = 0;
|
|
|
|
p = table[0];
|
|
|
|
p.left = true;
|
|
|
|
p.psum = parea;
|
|
|
|
} else {
|
|
|
|
if ((Math.abs(diff) <= fv4 * accuracy * da || dx <= dxmin) && da <= dxmax) {
|
|
|
|
// Accept approximate integral sum.
|
|
|
|
// If it was a right interval, add results to finish at this level.
|
|
|
|
// If it was a left interval, process right interval.
|
|
|
|
pdiff += diff;
|
|
|
|
for (;;) {
|
|
|
|
if (!p.left) { // process right-half interval
|
|
|
|
parea += sum;
|
|
|
|
alpha += da;
|
|
|
|
p.left = true;
|
|
|
|
p.psum = sum;
|
|
|
|
fv0 = p.f1t;
|
|
|
|
fv2 = p.f2t;
|
|
|
|
fv4 = p.f3t;
|
|
|
|
da = p.dat;
|
|
|
|
est = p.estr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
sum += p.psum;
|
|
|
|
parea -= p.psum;
|
|
|
|
if (--index <= 0) {
|
|
|
|
index = 0;
|
|
|
|
p = table[0];
|
|
|
|
p.psum = parea = sum;
|
|
|
|
alpha += da;
|
|
|
|
b += b - a;
|
|
|
|
cont = false;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
p = table[index];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (index >= table.length)
|
|
|
|
return null;
|
|
|
|
// Raise level and store information for processing right-half interval.
|
|
|
|
da = dx;
|
|
|
|
est = estl;
|
|
|
|
p = table[++index] = {
|
|
|
|
left: false,
|
|
|
|
f1t: fv2,
|
|
|
|
f2t: fv3,
|
|
|
|
f3t: fv4,
|
|
|
|
dat: dx,
|
|
|
|
estr: estr,
|
|
|
|
psum: 0
|
|
|
|
};
|
|
|
|
fv4 = fv2;
|
|
|
|
fv2 = fv1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return { b: b, area: area };
|
|
|
|
}
|
2011-03-03 11:32:39 -05:00
|
|
|
};
|