paper.js/src/path/PathFitter.js

251 lines
7.5 KiB
JavaScript
Raw Normal View History

/*
* Paper.js
*
* This file is part of Paper.js, a JavaScript Vector Graphics Library,
* based on Scriptographer.org and designed to be largely API compatible.
* http://paperjs.org/
* http://scriptographer.org/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* Copyright (c) 2011, Juerg Lehni & Jonathan Puckey
* http://lehni.org/ & http://jonathanpuckey.com/
*
* All rights reserved.
*/
// An Algorithm for Automatically Fitting Digitized Curves
// by Philip J. Schneider
// from "Graphics Gems", Academic Press, 1990
var PathFitter = Base.extend({
initialize: function(path, error) {
this.points = [];
2011-06-05 16:25:38 -04:00
var segments = path._segments,
prev;
for (var i = 0, l = segments.length; i < l; i++) {
var point = segments[i].point.clone();
if (!prev || !prev.equals(point)) {
this.points[i] = point;
prev = point;
}
}
this.error = error;
this.iterationError = error * error;
},
2011-06-05 16:26:01 -04:00
fit: function() {
this.segments = [new Segment(this.points[0])];
this.fitCubic(0, this.points.length - 1,
// Left Tangent
this.points[1].subtract(this.points[0]).normalize(),
// Right Tangent
this.points[this.points.length - 2].subtract(
this.points[this.points.length - 1]).normalize());
return this.segments;
},
// Fit a Bezier curve to a (sub)set of digitized points
fitCubic: function(first, last, tHat1, tHat2) {
// Use heuristic if region only has two points in it
if (last - first == 1) {
var pt1 = this.points[first],
pt2 = this.points[last],
dist = pt1.getDistance(pt2) / 3;
this.addCurve([pt1, pt1.add(tHat1.normalize(dist)),
pt2.add(tHat2.normalize(dist)), pt2]);
return;
}
// Parameterize points, and attempt to fit curve
var uPrime = this.chordLengthParameterize(first, last),
prevMaxError = this.iterationError,
error,
split;
2011-06-05 16:31:58 -04:00
// Try 4 iterations
for (var i = 0; i < 4; i++) {
var bezCurve = this.generateBezier(first, last, uPrime, tHat1, tHat2);
// Find max deviation of points to fitted curve
var max = this.findMaxError(first, last, bezCurve, uPrime);
if (max.error < this.error) {
this.addCurve(bezCurve);
return;
}
split = max.index;
// If error not too large, try some reparameterization and iteration
if (max.error >= this.iterationError || max.error >= prevMaxError)
break;
uPrime = this.reparameterize(first, last, uPrime, bezCurve);
prevMaxError = max.error;
}
// Fitting failed -- split at max error point and fit recursively
var V1 = this.points[split - 1].subtract(this.points[split]),
V2 = this.points[split].subtract(this.points[split + 1]),
tHatCenter = V1.add(V2).divide(2).normalize();
this.fitCubic(first, split, tHat1, tHatCenter);
this.fitCubic(split, last, tHatCenter.negate(), tHat2);
},
addCurve: function(bezCurve) {
var prev = this.segments[this.segments.length - 1];
prev.setHandleOut(bezCurve[1].subtract(bezCurve[0]));
this.segments.push(
new Segment(bezCurve[3], bezCurve[2].subtract(bezCurve[3])));
},
// Use least-squares method to find Bezier control points for region.
generateBezier: function(first, last, uPrime, tHat1, tHat2) {
var nPts = last - first + 1,
pt1 = this.points[first],
pt2 = this.points[last];
// Create the C and X matrices
var C = [[0, 0], [0, 0]],
X = [0, 0];
for (var i = 0; i < nPts; i++) {
var u = uPrime[i],
t = 1 - u,
b = 3 * u * t,
2011-06-05 16:44:34 -04:00
b0 = t * t * t,
b1 = b * t,
b2 = b * u,
b3 = u * u * u,
a1 = tHat1.normalize(b1),
a2 = tHat2.normalize(b2),
tmp = this.points[first + i]
2011-06-05 16:44:34 -04:00
.subtract(pt1.multiply(b0 + b1))
.subtract(pt2.multiply(b2 + b3));
C[0][0] += a1.dot(a1);
C[0][1] += a1.dot(a2);
// C[1][0] += a1.dot(a2);
C[1][0] = C[0][1];
C[1][1] += a2.dot(a2);
X[0] += a1.dot(tmp);
X[1] += a2.dot(tmp);
}
// Compute the determinants of C and X
var det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1],
alpha_l, alpha_r;
2011-06-05 16:56:04 -04:00
if (Math.abs(det_C0_C1) > Numerical.TOLERANCE) {
// Kramer's rule
var det_C0_X = C[0][0] * X[1] - C[1][0] * X[0],
det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1];
// Derive alpha values
alpha_l = det_X_C1 / det_C0_C1;
alpha_r = det_C0_X / det_C0_C1;
} else {
// Matrix is under-determined, try assuming alpha_l == alpha_r
var c0 = C[0][0] + C[0][1],
c1 = C[1][0] + C[1][1];
if (Math.abs(c0) > Numerical.TOLERANCE) {
alpha_l = alpha_r = X[0] / c0;
} else if (Math.abs(c0) > Numerical.TOLERANCE) {
alpha_l = alpha_r = X[1] / c1;
} else {
// Handle below
alpha_l = alpha_r = 0.;
}
}
// If alpha negative, use the Wu/Barsky heuristic (see text)
// (if alpha is 0, you get coincident control points that lead to
// divide by zero in any subsequent NewtonRaphsonRootFind() call.
var segLength = pt2.getDistance(pt1),
epsilon = Numerical.TOLERANCE * segLength;
if (alpha_l < epsilon || alpha_r < epsilon) {
// fall back on standard (probably inaccurate) formula,
// and subdivide further if needed.
alpha_l = alpha_r = segLength / 3;
}
// First and last control points of the Bezier curve are
// positioned exactly at the first and last data points
// Control points 1 and 2 are positioned an alpha distance out
// on the tangent vectors, left and right, respectively
return [pt1, pt1.add(tHat1.normalize(alpha_l)),
pt2.add(tHat2.normalize(alpha_r)), pt2];
},
// Given set of points and their parameterization, try to find
// a better parameterization.
reparameterize: function(first, last, u, bezCurve) {
var uPrime = [];
for (var i = first; i <= last; i++) {
uPrime[i - first] = this.findRoot(bezCurve, this.points[i],
u[i - first]);
}
return uPrime;
},
// Use Newton-Raphson iteration to find better root.
findRoot: function(Q, P, u) {
var Q1 = [],
Q2 = [];
// Generate control vertices for Q'
for (var i = 0; i <= 2; i++) {
Q1[i] = Q[i + 1].subtract(Q[i]).multiply(3);
}
// Generate control vertices for Q''
for (var i = 0; i <= 1; i++) {
Q2[i] = Q1[i + 1].subtract(Q1[i]).multiply(2);
}
// Compute Q(u), Q'(u) and Q''(u)
Q_u = this.evaluate(3, Q, u);
Q1_u = this.evaluate(2, Q1, u);
Q2_u = this.evaluate(1, Q2, u);
// Compute f(u)/f'(u)
var V = Q_u.subtract(P),
df = Q1_u.dot(Q1_u) + V.dot(Q2_u);
if (Math.abs(df) < Numerical.TOLERANCE)
return u;
// u = u - f(u) / f'(u)
return u - V.dot(Q1_u) / df;
},
// Evaluate a Bezier curve at a particular parameter value
evaluate: function(degree, V, t) {
// Copy array
var Vtemp = V.slice();
// Triangle computation
for (var i = 1; i <= degree; i++) {
for (var j = 0; j <= degree - i; j++) {
Vtemp[j] = Vtemp[j].multiply(1 - t).add(Vtemp[j + 1].multiply(t));
}
}
return Vtemp[0];
},
// Assign parameter values to digitized points
// using relative distances between points.
chordLengthParameterize: function(first, last) {
var u = [0];
for (var i = first + 1; i <= last; i++) {
u[i - first] = u[i - first - 1]
+ this.points[i].getDistance(this.points[i - 1]);
}
for (var i = first + 1; i <= last; i++) {
u[i - first] = u[i - first] / u[last - first];
}
return u;
},
2011-06-05 16:31:58 -04:00
// Find the maximum squared distance of digitized points to fitted curve.
findMaxError: function(first, last, bezCurve, u) {
var index = Math.floor((last - first + 1) / 2),
maxDist = 0;
for (var i = first + 1; i < last; i++) {
var P = this.evaluate(3, bezCurve, u[i - first]);
var v = P.subtract(this.points[i]);
var dist = v.x * v.x + v.y * v.y; // squared
if (dist >= maxDist) {
maxDist = dist;
index = i;
}
}
return {
error: maxDist,
index: index
};
}
});