paper.js/src/path/Curve.js

1382 lines
53 KiB
JavaScript
Raw Normal View History

2011-03-06 19:50:44 -05:00
/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
2011-03-07 20:41:50 -05:00
* http://paperjs.org/
*
2014-01-03 19:47:16 -05:00
* Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey
* http://scratchdisk.com/ & http://jonathanpuckey.com/
*
2011-07-01 06:17:45 -04:00
* Distributed under the MIT license. See LICENSE file for details.
*
2011-03-07 20:41:50 -05:00
* All rights reserved.
2011-03-06 19:50:44 -05:00
*/
/**
* @name Curve
*
2011-06-27 08:58:17 -04:00
* @class The Curve object represents the parts of a path that are connected by
* two following {@link Segment} objects. The curves of a path can be accessed
* through its {@link Path#curves} array.
2011-06-27 08:58:17 -04:00
*
* While a segment describe the anchor point and its incoming and outgoing
* handles, a Curve object describes the curve passing between two such
* segments. Curves and segments represent two different ways of looking at the
* same thing, but focusing on different aspects. Curves for example offer many
* convenient ways to work with parts of the path, finding lengths, positions or
* tangents at given offsets.
*/
var Curve = Base.extend(/** @lends Curve# */{
2014-08-16 13:24:54 -04:00
_class: 'Curve',
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @param {Segment} segment1
* @param {Segment} segment2
*/
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @param {Point} point1
* @param {Point} handle1
* @param {Point} handle2
* @param {Point} point2
*/
/**
* Creates a new curve object.
*
* @name Curve#initialize
* @ignore
* @param {Number} x1
* @param {Number} y1
* @param {Number} handle1x
* @param {Number} handle1y
* @param {Number} handle2x
* @param {Number} handle2y
* @param {Number} x2
* @param {Number} y2
*/
initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
var count = arguments.length;
if (count === 3) {
// Undocumented internal constructor, used by Path#getCurves()
// new Segment(path, segment1, segment2);
this._path = arg0;
this._segment1 = arg1;
this._segment2 = arg2;
} else if (count === 0) {
this._segment1 = new Segment();
this._segment2 = new Segment();
} else if (count === 1) {
// new Segment(segment);
// Note: This copies from existing segments through bean getters
this._segment1 = new Segment(arg0.segment1);
this._segment2 = new Segment(arg0.segment2);
} else if (count === 2) {
// new Segment(segment1, segment2);
this._segment1 = new Segment(arg0);
this._segment2 = new Segment(arg1);
} else {
var point1, handle1, handle2, point2;
if (count === 4) {
point1 = arg0;
handle1 = arg1;
handle2 = arg2;
point2 = arg3;
} else if (count === 8) {
// Convert getValue() array back to points and handles so we
// can create segments for those.
point1 = [arg0, arg1];
point2 = [arg6, arg7];
handle1 = [arg2 - arg0, arg3 - arg1];
handle2 = [arg4 - arg6, arg5 - arg7];
}
this._segment1 = new Segment(point1, null, handle1);
this._segment2 = new Segment(point2, handle2, null);
}
},
_changed: function() {
// Clear cached values.
this._length = this._bounds = undefined;
},
/**
* The first anchor point of the curve.
*
* @type Point
* @bean
*/
getPoint1: function() {
return this._segment1._point;
},
setPoint1: function(/* point */) {
var point = Point.read(arguments);
this._segment1._point.set(point.x, point.y);
},
/**
* The second anchor point of the curve.
*
* @type Point
* @bean
*/
getPoint2: function() {
return this._segment2._point;
},
setPoint2: function(/* point */) {
var point = Point.read(arguments);
this._segment2._point.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the first anchor point.
*
* @type Point
* @bean
*/
getHandle1: function() {
return this._segment1._handleOut;
},
setHandle1: function(/* point */) {
var point = Point.read(arguments);
this._segment1._handleOut.set(point.x, point.y);
},
/**
* The handle point that describes the tangent in the second anchor point.
*
* @type Point
* @bean
*/
getHandle2: function() {
return this._segment2._handleIn;
},
setHandle2: function(/* point */) {
var point = Point.read(arguments);
this._segment2._handleIn.set(point.x, point.y);
},
/**
* The first segment of the curve.
*
* @type Segment
* @bean
*/
getSegment1: function() {
return this._segment1;
},
/**
* The second segment of the curve.
*
* @type Segment
* @bean
*/
getSegment2: function() {
return this._segment2;
},
/**
* The path that the curve belongs to.
*
* @type Path
* @bean
*/
getPath: function() {
return this._path;
},
/**
* The index of the curve in the {@link Path#curves} array.
*
* @type Number
* @bean
*/
getIndex: function() {
return this._segment1._index;
},
/**
* The next curve in the {@link Path#curves} array that the curve
* belongs to.
*
* @type Curve
* @bean
*/
getNext: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index + 1]
|| this._path._closed && curves[0]) || null;
},
/**
* The previous curve in the {@link Path#curves} array that the curve
* belongs to.
*
* @type Curve
* @bean
*/
getPrevious: function() {
var curves = this._path && this._path._curves;
return curves && (curves[this._segment1._index - 1]
|| this._path._closed && curves[curves.length - 1]) || null;
},
/**
* Specifies whether the points and handles of the curve are selected.
*
* @type Boolean
* @bean
*/
isSelected: function() {
return this.getPoint1().isSelected()
&& this.getHandle2().isSelected()
&& this.getHandle2().isSelected()
&& this.getPoint2().isSelected();
},
setSelected: function(selected) {
this.getPoint1().setSelected(selected);
this.getHandle1().setSelected(selected);
this.getHandle2().setSelected(selected);
this.getPoint2().setSelected(selected);
},
getValues: function(matrix) {
return Curve.getValues(this._segment1, this._segment2, matrix);
},
getPoints: function() {
// Convert to array of absolute points
var coords = this.getValues(),
points = [];
for (var i = 0; i < 8; i += 2)
points.push(new Point(coords[i], coords[i + 1]));
return points;
},
/**
* The approximated length of the curve in points.
*
* @type Number
* @bean
*/
getLength: function() {
if (this._length == null) {
// Use simple point distance for linear curves
this._length = this.isLinear()
? this._segment2._point.getDistance(this._segment1._point)
: Curve.getLength(this.getValues(), 0, 1);
}
return this._length;
},
getArea: function() {
return Curve.getArea(this.getValues());
},
getPart: function(from, to) {
return new Curve(Curve.getPart(this.getValues(), from, to));
},
// DOCS: Curve#getPartLength(from, to)
getPartLength: function(from, to) {
return Curve.getLength(this.getValues(), from, to);
},
/**
* Checks if this curve is linear, meaning it does not define any curve
* handle.
* @return {Boolean} {@true if the curve is linear}
*/
isLinear: function() {
return this._segment1._handleOut.isZero()
&& this._segment2._handleIn.isZero();
},
isHorizontal: function() {
return this.isLinear() && Numerical.isZero(
this._segment1._point._y - this._segment2._point._y);
},
// DOCS: Curve#getIntersections()
getIntersections: function(curve) {
return Curve.getIntersections(this.getValues(), curve.getValues(),
this, curve, []);
},
// TODO: adjustThroughPoint
/**
* Private method that handles all types of offset / isParameter pairs and
* converts it to a curve parameter.
*/
_getParameter: function(offset, isParameter) {
return isParameter
? offset
// Accept CurveLocation objects, and objects that act like
// them:
: offset && offset.curve === this
? offset.parameter
: offset === undefined && isParameter === undefined
? 0.5 // default is in the middle
: this.getParameterAt(offset, 0);
},
/**
* Divides the curve into two curves at the given offset. The curve itself
* is modified and becomes the first part, the second part is returned as a
* new curve. If the modified curve belongs to a path item, the second part
* is also added to the path.
*
* @name Curve#divide
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Curve} the second part of the divided curve
*/
// TODO: Rename to divideAt()?
divide: function(offset, isParameter, ignoreLinear) {
var parameter = this._getParameter(offset, isParameter),
tolerance = /*#=*/Numerical.TOLERANCE,
res = null;
if (parameter > tolerance && parameter < 1 - tolerance) {
var parts = Curve.subdivide(this.getValues(), parameter),
isLinear = ignoreLinear ? false : this.isLinear(),
left = parts[0],
right = parts[1];
// Write back the results:
if (!isLinear) {
this._segment1._handleOut.set(left[2] - left[0],
left[3] - left[1]);
// segment2 is the end segment. By inserting newSegment
// between segment1 and 2, 2 becomes the end segment.
// Convert absolute -> relative
this._segment2._handleIn.set(right[4] - right[6],
right[5] - right[7]);
}
// Create the new segment, convert absolute -> relative:
var x = left[6], y = left[7],
segment = new Segment(new Point(x, y),
!isLinear && new Point(left[4] - x, left[5] - y),
!isLinear && new Point(right[2] - x, right[3] - y));
// Insert it in the segments list, if needed:
if (this._path) {
// Insert at the end if this curve is a closing curve of a
// closed path, since otherwise it would be inserted at 0.
if (this._segment1._index > 0 && this._segment2._index === 0) {
this._path.add(segment);
} else {
this._path.insert(this._segment2._index, segment);
}
// The way Path#_add handles curves, this curve will always
// become the owner of the newly inserted segment.
// TODO: I expect this.getNext() to produce the correct result,
// but since we're inserting differently in _add (something
// linked with CurveLocation#divide()), this is not the case...
res = this; // this.getNext();
} else {
// otherwise create it from the result of split
var end = this._segment2;
this._segment2 = segment;
res = new Curve(segment, end);
}
}
return res;
},
/**
* Splits the path this curve belongs to at the given offset. After
* splitting, the path will be open. If the path was open already, splitting
* will result in two paths.
*
* @name Curve#split
* @function
* @param {Number} [offset=0.5] the offset on the curve at which to split,
* or the curve time parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Path} the newly created path after splitting, if any
* @see Path#split(index, parameter)
*/
// TODO: Rename to splitAt()?
split: function(offset, isParameter) {
return this._path
? this._path.split(this._segment1._index,
this._getParameter(offset, isParameter))
: null;
},
/**
* Returns a reversed version of the curve, without modifying the curve
* itself.
*
* @return {Curve} a reversed version of the curve
*/
reverse: function() {
return new Curve(this._segment2.reverse(), this._segment1.reverse());
},
/**
* Removes the curve from the path that it belongs to, by merging its two
* path segments.
* @return {Boolean} {@true if the curve was removed}
*/
remove: function() {
var removed = false;
if (this._path) {
var segment2 = this._segment2,
handleOut = segment2._handleOut;
removed = segment2.remove();
if (removed)
this._segment1._handleOut.set(handleOut.x, handleOut.y);
}
return removed;
},
/**
* Returns a copy of the curve.
*
* @return {Curve}
*/
clone: function() {
return new Curve(this._segment1, this._segment2);
},
/**
* @return {String} a string representation of the curve
*/
toString: function() {
var parts = [ 'point1: ' + this._segment1._point ];
if (!this._segment1._handleOut.isZero())
parts.push('handle1: ' + this._segment1._handleOut);
if (!this._segment2._handleIn.isZero())
parts.push('handle2: ' + this._segment2._handleIn);
parts.push('point2: ' + this._segment2._point);
return '{ ' + parts.join(', ') + ' }';
},
// Mess with indentation in order to get more line-space below...
statics: {
2014-08-16 13:24:54 -04:00
getValues: function(segment1, segment2, matrix) {
var p1 = segment1._point,
h1 = segment1._handleOut,
h2 = segment2._handleIn,
p2 = segment2._point,
values = [
p1._x, p1._y,
p1._x + h1._x, p1._y + h1._y,
p2._x + h2._x, p2._y + h2._y,
p2._x, p2._y
];
if (matrix)
matrix._transformCoordinates(values, values, 4);
2014-08-16 13:24:54 -04:00
return values;
},
// TODO: Instead of constants for type, use a "enum" and code substitution.
2014-08-16 13:24:54 -04:00
evaluate: function(v, t, type) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
tolerance = /*#=*/Numerical.TOLERANCE,
x, y;
// Handle special case at beginning / end of curve
if (type === 0 && (t < tolerance || t > 1 - tolerance)) {
var isZero = t < tolerance;
x = isZero ? p1x : p2x;
y = isZero ? p1y : p2y;
} else {
// Calculate the polynomial coefficients.
var cx = 3 * (c1x - p1x),
bx = 3 * (c2x - c1x) - cx,
ax = p2x - p1x - cx - bx,
cy = 3 * (c1y - p1y),
by = 3 * (c2y - c1y) - cy,
ay = p2y - p1y - cy - by;
if (type === 0) {
// Calculate the curve point at parameter value t
x = ((ax * t + bx) * t + cx) * t + p1x;
y = ((ay * t + by) * t + cy) * t + p1y;
} else {
// 1: tangent, 1st derivative
// 2: normal, 1st derivative
// 3: curvature, 1st derivative & 2nd derivative
// Prevent tangents and normals of length 0:
// http://stackoverflow.com/questions/10506868/
if (t < tolerance && c1x === p1x && c1y === p1y
|| t > 1 - tolerance && c2x === p2x && c2y === p2y) {
x = p2x - p1x;
y = p2y - p1y;
} else if (t < tolerance) {
x = cx;
y = cy;
} else if (t > 1 - tolerance) {
x = 3 * (p2x - c2x);
y = 3 * (p2y - c2y);
} else {
// Simply use the derivation of the bezier function for both
// the x and y coordinates:
x = (3 * ax * t + 2 * bx) * t + cx;
y = (3 * ay * t + 2 * by) * t + cy;
}
if (type === 3) {
// Calculate 2nd derivative, and curvature from there:
// http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31
// k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2))
var x2 = 6 * ax * t + 2 * bx,
y2 = 6 * ay * t + 2 * by;
return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2);
}
}
}
// The normal is simply the rotated tangent:
return type === 2 ? new Point(y, -x) : new Point(x, y);
},
subdivide: function(v, t) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
if (t === undefined)
t = 0.5;
// Triangle computation, with loops unrolled.
var u = 1 - t,
// Interpolate from 4 to 3 points
p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y,
p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y,
p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y,
// Interpolate from 3 to 2 points
p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y,
p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y,
// Interpolate from 2 points to 1 point
p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y;
// We now have all the values we need to build the sub-curves:
return [
[p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left
[p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right
];
},
// Converts from the point coordinates (p1, c1, c2, p2) for one axis to
// the polynomial coefficients and solves the polynomial for val
solveCubic: function (v, coord, val, roots, min, max) {
var p1 = v[coord],
c1 = v[coord + 2],
c2 = v[coord + 4],
p2 = v[coord + 6],
c = 3 * (c1 - p1),
b = 3 * (c2 - c1) - c,
a = p2 - p1 - c - b;
return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max);
},
getParameterOf: function(v, x, y) {
// Handle beginnings and end separately, as they are not detected
// sometimes.
var tolerance = /*#=*/Numerical.TOLERANCE;
if (Math.abs(v[0] - x) < tolerance && Math.abs(v[1] - y) < tolerance)
return 0;
if (Math.abs(v[6] - x) < tolerance && Math.abs(v[7] - y) < tolerance)
return 1;
var txs = [],
tys = [],
sx = Curve.solveCubic(v, 0, x, txs, 0, 1),
sy = Curve.solveCubic(v, 1, y, tys, 0, 1),
2014-08-16 13:24:54 -04:00
tx, ty;
// sx, sy == -1 means infinite solutions:
// Loop through all solutions for x and match with solutions for y,
// to see if we either have a matching pair, or infinite solutions
// for one or the other.
for (var cx = 0; sx == -1 || cx < sx;) {
if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) {
for (var cy = 0; sy == -1 || cy < sy;) {
if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) {
// Handle infinite solutions by assigning root of
// the other polynomial
if (sx == -1) tx = ty;
else if (sy == -1) ty = tx;
// Use average if we're within tolerance
if (Math.abs(tx - ty) < tolerance)
return (tx + ty) * 0.5;
}
}
// Avoid endless loops here: If sx is infinite and there was
// no fitting ty, there's no solution for this bezier
if (sx == -1)
break;
}
}
return null;
},
// TODO: Find better name
getPart: function(v, from, to) {
if (from > 0)
v = Curve.subdivide(v, from)[1]; // [1] right
// Interpolate the parameter at 'to' in the new curve and cut there.
2014-08-16 13:24:54 -04:00
if (to < 1)
v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left
return v;
},
isLinear: function(v) {
var isZero = Numerical.isZero;
return isZero(v[0] - v[2]) && isZero(v[1] - v[3])
&& isZero(v[4] - v[6]) && isZero(v[5] - v[7]);
},
isFlatEnough: function(v, tolerance) {
// Thanks to Kaspar Fischer and Roger Willcocks for the following:
// http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ux = 3 * c1x - 2 * p1x - p2x,
uy = 3 * c1y - 2 * p1y - p2y,
vx = 3 * c2x - 2 * p2x - p1x,
vy = 3 * c2y - 2 * p2y - p1y;
return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy)
< 10 * tolerance * tolerance;
},
getArea: function(v) {
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7];
// http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x
- 1.5 * c1y * p2x - 3.0 * p1y * c1x
- 1.5 * p1y * c2x - 0.5 * p1y * p2x
+ 1.5 * c2y * p1x + 1.5 * c2y * c1x
- 3.0 * c2y * p2x + 0.5 * p2y * p1x
+ 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10;
},
getBounds: function(v) {
var min = v.slice(0, 2), // Start with values of point1
max = min.slice(), // clone
roots = [0, 0];
for (var i = 0; i < 2; i++)
Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6],
i, 0, min, max, roots);
return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]);
},
/**
* Private helper for both Curve.getBounds() and Path.getBounds(), which
* finds the 0-crossings of the derivative of a bezier curve polynomial, to
* determine potential extremas when finding the bounds of a curve.
* Note: padding is only used for Path.getBounds().
*/
_addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) {
// Code ported and further optimised from:
// http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
function add(value, padding) {
var left = value - padding,
right = value + padding;
if (left < min[coord])
min[coord] = left;
if (right > max[coord])
max[coord] = right;
}
// Calculate derivative of our bezier polynomial, divided by 3.
// Doing so allows for simpler calculations of a, b, c and leads to the
// same quadratic roots.
var a = 3 * (v1 - v2) - v0 + v3,
b = 2 * (v0 + v2) - 4 * v1,
c = v1 - v0,
count = Numerical.solveQuadratic(a, b, c, roots),
// Add some tolerance for good roots, as t = 0 / 1 are added
// separately anyhow, and we don't want joins to be added with
// radiuses in getStrokeBounds()
tMin = /*#=*/Numerical.TOLERANCE,
tMax = 1 - tMin;
// Only add strokeWidth to bounds for points which lie within 0 < t < 1
// The corner cases for cap and join are handled in getStrokeBounds()
add(v3, 0);
for (var i = 0; i < count; i++) {
var t = roots[i],
u = 1 - t;
// Test for good roots and only add to bounds if good.
if (tMin < t && t < tMax)
// Calculate bezier polynomial at t.
add(u * u * u * v0
+ 3 * u * u * t * v1
+ 3 * u * t * t * v2
+ t * t * t * v3,
padding);
}
}
}}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'],
2014-08-16 13:24:54 -04:00
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path interesections.
function(name) {
this[name] = function() {
if (!this._bounds)
this._bounds = {};
var bounds = this._bounds[name];
if (!bounds) {
// Calculate the curve bounds by passing a segment list for the
// curve to the static Path.get*Boudns methods.
bounds = this._bounds[name] = Path[name]([this._segment1,
this._segment2], false, this._path.getStyle());
}
return bounds.clone();
};
},
/** @lends Curve# */{
2014-08-16 13:24:54 -04:00
/**
* The bounding rectangle of the curve excluding stroke width.
*
* @name Curve#bounds
2014-08-16 13:24:54 -04:00
* @type Rectangle
*/
/**
* The bounding rectangle of the curve including stroke width.
*
* @name Curve#strokeBounds
2014-08-16 13:24:54 -04:00
* @type Rectangle
*/
/**
* The bounding rectangle of the curve including handles.
*
* @name Curve#handleBounds
2014-08-16 13:24:54 -04:00
* @type Rectangle
*/
/**
* The rough bounding rectangle of the curve that is shure to include all of
* the drawing, including stroke width.
*
* @name Curve#roughBounds
2014-08-16 13:24:54 -04:00
* @type Rectangle
* @ignore
*/
2013-06-27 20:13:00 -04:00
}), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'],
2014-08-16 13:24:54 -04:00
// Note: Although Curve.getBounds() exists, we are using Path.getBounds() to
// determine the bounds of Curve objects with defined segment1 and segment2
// values Curve.getBounds() can be used directly on curve arrays, without
// the need to create a Curve object first, as required by the code that
// finds path interesections.
function(name, index) {
this[name + 'At'] = function(offset, isParameter) {
var values = this.getValues();
return Curve.evaluate(values, isParameter
? offset : Curve.getParameterAt(values, offset, 0), index);
};
// Deprecated and undocumented, but keep around for now.
// TODO: Remove once enough time has passed (28.01.2013)
this[name] = function(parameter) {
return Curve.evaluate(this.getValues(), parameter, index);
};
},
/** @lends Curve# */{
2014-08-16 13:24:54 -04:00
// Explicitly deactivate the creation of beans, as we have functions here
// that look like bean getters but actually read arguments.
// See #getParameterOf(), #getLocationOf(), #getNearestLocation(), ...
beans: false,
/**
* Calculates the curve time parameter of the specified offset on the path,
* relative to the provided start parameter. If offset is a negative value,
* the parameter is searched to the left of the start parameter. If no start
* parameter is provided, a default of {@code 0} for positive values of
* {@code offset} and {@code 1} for negative values of {@code offset}.
* @param {Number} offset
* @param {Number} [start]
* @return {Number} the curve time parameter at the specified offset.
*/
getParameterAt: function(offset, start) {
return Curve.getParameterAt(this.getValues(), offset,
start !== undefined ? start : offset < 0 ? 1 : 0);
},
/**
* Returns the curve time parameter of the specified point if it lies on the
* curve, {@code null} otherwise.
* @param {Point} point the point on the curve.
* @return {Number} the curve time parameter of the specified point.
*/
getParameterOf: function(/* point */) {
var point = Point.read(arguments);
return Curve.getParameterOf(this.getValues(), point.x, point.y);
},
/**
* Calculates the curve location at the specified offset or curve time
* parameter.
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {CurveLocation} the curve location at the specified the offset.
*/
getLocationAt: function(offset, isParameter) {
if (!isParameter)
offset = this.getParameterAt(offset);
return offset >= 0 && offset <= 1 && new CurveLocation(this, offset);
2014-08-16 13:24:54 -04:00
},
/**
* Returns the curve location of the specified point if it lies on the
* curve, {@code null} otherwise.
* @param {Point} point the point on the curve.
* @return {CurveLocation} the curve location of the specified point.
*/
getLocationOf: function(/* point */) {
return this.getLocationAt(this.getParameterOf(Point.read(arguments)),
true);
2014-08-16 13:24:54 -04:00
},
/**
* Returns the length of the path from its beginning up to up to the
* specified point if it lies on the path, {@code null} otherwise.
* @param {Point} point the point on the path.
* @return {Number} the length of the path up to the specified point.
*/
getOffsetOf: function(/* point */) {
var loc = this.getLocationOf.apply(this, arguments);
return loc ? loc.getOffset() : null;
},
getNearestLocation: function(/* point */) {
var point = Point.read(arguments),
values = this.getValues(),
count = 100,
minDist = Infinity,
minT = 0;
function refine(t) {
if (t >= 0 && t <= 1) {
var dist = point.getDistance(
Curve.evaluate(values, t, 0), true);
if (dist < minDist) {
minDist = dist;
minT = t;
return true;
}
}
}
for (var i = 0; i <= count; i++)
refine(i / count);
// Now iteratively refine solution until we reach desired precision.
var step = 1 / (count * 2);
while (step > /*#=*/Numerical.TOLERANCE) {
if (!refine(minT - step) && !refine(minT + step))
step /= 2;
}
var pt = Curve.evaluate(values, minT, 0);
return new CurveLocation(this, minT, pt, null, null, null,
point.getDistance(pt));
},
getNearestPoint: function(/* point */) {
return this.getNearestLocation.apply(this, arguments).getPoint();
}
/**
* Returns the point on the curve at the specified offset.
*
* @name Curve#getPointAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the point on the curve at the specified offset.
*/
/**
* Returns the tangent vector of the curve at the specified position.
*
* @name Curve#getTangentAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the tangent of the curve at the specified offset.
*/
/**
* Returns the normal vector of the curve at the specified position.
*
* @name Curve#getNormalAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the normal of the curve at the specified offset.
*/
/**
* Returns the curvature vector of the curve at the specified position.
* Curvatures indicate how sharply a curve changes direction. A straight
* line has zero curvature where as a circle has a constant curvature.
*
* @name Curve#getCurvatureAt
* @function
* @param {Number} offset the offset on the curve, or the curve time
* parameter if {@code isParameter} is {@code true}
* @param {Boolean} [isParameter=false] pass {@code true} if {@code offset}
* is a curve time parameter.
* @return {Point} the curvature of the curve at the specified offset.
*/
}),
new function() { // Scope for methods that require numerical integration
2014-08-16 13:24:54 -04:00
function getLengthIntegrand(v) {
// Calculate the coefficients of a Bezier derivative.
var p1x = v[0], p1y = v[1],
c1x = v[2], c1y = v[3],
c2x = v[4], c2y = v[5],
p2x = v[6], p2y = v[7],
ax = 9 * (c1x - c2x) + 3 * (p2x - p1x),
bx = 6 * (p1x + c2x) - 12 * c1x,
cx = 3 * (c1x - p1x),
ay = 9 * (c1y - c2y) + 3 * (p2y - p1y),
by = 6 * (p1y + c2y) - 12 * c1y,
cy = 3 * (c1y - p1y);
return function(t) {
// Calculate quadratic equations of derivatives for x and y
var dx = (ax * t + bx) * t + cx,
dy = (ay * t + by) * t + cy;
return Math.sqrt(dx * dx + dy * dy);
};
}
// Amount of integral evaluations for the interval 0 <= a < b <= 1
function getIterations(a, b) {
// Guess required precision based and size of range...
// TODO: There should be much better educated guesses for
// this. Also, what does this depend on? Required precision?
return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32)));
}
return {
statics: true,
getLength: function(v, a, b) {
if (a === undefined)
a = 0;
if (b === undefined)
b = 1;
var isZero = Numerical.isZero;
// See if the curve is linear by checking p1 == c1 and p2 == c2
if (a === 0 && b === 1
&& isZero(v[0] - v[2]) && isZero(v[1] - v[3])
&& isZero(v[6] - v[4]) && isZero(v[7] - v[5])) {
// Straight line
var dx = v[6] - v[0], // p2x - p1x
dy = v[7] - v[1]; // p2y - p1y
return Math.sqrt(dx * dx + dy * dy);
}
var ds = getLengthIntegrand(v);
return Numerical.integrate(ds, a, b, getIterations(a, b));
},
getParameterAt: function(v, offset, start) {
if (offset === 0)
return start;
// See if we're going forward or backward, and handle cases
// differently
var forward = offset > 0,
a = forward ? start : 0,
b = forward ? 1 : start,
// Use integrand to calculate both range length and part
// lengths in f(t) below.
ds = getLengthIntegrand(v),
// Get length of total range
rangeLength = Numerical.integrate(ds, a, b,
getIterations(a, b));
offset = Math.abs(offset);
2014-08-16 13:24:54 -04:00
if (offset >= rangeLength)
return forward ? b : a;
// Use offset / rangeLength for an initial guess for t, to
// bring us closer:
var guess = offset / rangeLength,
length = 0;
// Iteratively calculate curve range lengths, and add them up,
// using integration precision depending on the size of the
// range. This is much faster and also more precise than not
// modifying start and calculating total length each time.
function f(t) {
var count = getIterations(start, t);
length += start < t
? Numerical.integrate(ds, start, t, count)
: -Numerical.integrate(ds, t, start, count);
start = t;
return length - offset;
}
return Numerical.findRoot(f, ds,
forward ? a + guess : b - guess, // Initial guess for x
a, b, 16, /*#=*/Numerical.TOLERANCE);
}
};
}, new function() { // Scope for intersection using bezier fat-line clipping
2014-08-16 13:24:54 -04:00
function addLocation(locations, include, curve1, t1, point1, curve2, t2,
point2) {
var loc = new CurveLocation(curve1, t1, point1, curve2, t2, point2);
if (!include || include(loc))
locations.push(loc);
}
function addCurveIntersections(v1, v2, curve1, curve2, locations, include,
tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion) {
/*#*/ if (__options.fatlineClipping) {
2014-08-16 13:24:54 -04:00
// Avoid deeper recursion.
if (recursion > 20)
return;
// Let P be the first curve and Q be the second
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7],
tolerance = /*#=*/Numerical.TOLERANCE,
hullEpsilon = 1e-9,
getSignedDistance = Line.getSignedDistance,
// Calculate the fat-line L for Q is the baseline l and two
// offsets which completely encloses the curve P.
d1 = getSignedDistance(q0x, q0y, q3x, q3y, v2[2], v2[3]) || 0,
d2 = getSignedDistance(q0x, q0y, q3x, q3y, v2[4], v2[5]) || 0,
factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9,
dMin = factor * Math.min(0, d1, d2),
dMax = factor * Math.max(0, d1, d2),
// Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the
// distance of P from the baseline l of the fat-line, ti is equally
// spaced in [0, 1]
dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]),
dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]),
dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]),
dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]),
tMinNew, tMaxNew, tDiff;
if (q0x === q3x && uMax - uMin <= hullEpsilon && recursion > 3) {
// The fatline of Q has converged to a point, the clipping is not
// reliable. Return the value we have even though we will miss the
// precision.
tMinNew = (tMax + tMin) / 2;
tMaxNew = tMinNew;
tDiff = 0;
} else {
// Get the top and bottom parts of the convex-hull
var hull = getConvexHull(dp0, dp1, dp2, dp3),
top = hull[0],
bottom = hull[1],
tMinClip, tMaxClip;
// Clip the convex-hull with dMin and dMax
tMinClip = clipConvexHull(top, bottom, dMin, dMax);
top.reverse();
bottom.reverse();
tMaxClip = clipConvexHull(top, bottom, dMin, dMax);
// No intersections if one of the tvalues are null or 'undefined'
if (tMinClip == null || tMaxClip == null)
return false;
// Clip P with the fatline for Q
v1 = Curve.getPart(v1, tMinClip, tMaxClip);
tDiff = tMaxClip - tMinClip;
// tMin and tMax are within the range (0, 1). We need to project it
// to the original parameter range for v2.
tMinNew = tMax * tMinClip + tMin * (1 - tMinClip);
tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip);
}
// Check if we need to subdivide the curves
if (oldTDiff > 0.8 && tDiff > 0.8) {
// Subdivide the curve which has converged the least.
if (tMaxNew - tMinNew > uMax - uMin) {
var parts = Curve.subdivide(v1, 0.5),
t = tMinNew + (tMaxNew - tMinNew) / 2;
addCurveIntersections(
v2, parts[0], curve2, curve1, locations, include,
uMin, uMax, tMinNew, t, tDiff, !reverse, ++recursion);
addCurveIntersections(
v2, parts[1], curve2, curve1, locations, include,
uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion);
} else {
var parts = Curve.subdivide(v2, 0.5),
t = uMin + (uMax - uMin) / 2;
addCurveIntersections(
parts[0], v1, curve2, curve1, locations, include,
uMin, t, tMinNew, tMaxNew, tDiff, !reverse, ++recursion);
addCurveIntersections(
parts[1], v1, curve2, curve1, locations, include,
t, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion);
}
} else if (Math.max(uMax - uMin, tMaxNew - tMinNew) < tolerance) {
// We have isolated the intersection with sufficient precision
var t1 = tMinNew + (tMaxNew - tMinNew) / 2,
t2 = uMin + (uMax - uMin) / 2;
if (reverse) {
addLocation(locations, include,
curve2, t2, Curve.evaluate(v2, t2, 0),
curve1, t1, Curve.evaluate(v1, t1, 0));
} else {
addLocation(locations, include,
curve1, t1, Curve.evaluate(v1, t1, 0),
curve2, t2, Curve.evaluate(v2, t2, 0));
}
} else { // Iterate
addCurveIntersections(v2, v1, curve2, curve1, locations, include,
uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, ++recursion);
}
/*#*/ } else { // !__options.fatlineClipping
2014-08-16 13:24:54 -04:00
// Subdivision method
var bounds1 = Curve.getBounds(v1),
bounds2 = Curve.getBounds(v2),
tolerance = /*#=*/Numerical.TOLERANCE;
if (bounds1.touches(bounds2)) {
// See if both curves are flat enough to be treated as lines, either
// because they have no control points at all, or are "flat enough"
// If the curve was flat in a previous iteration, we don't need to
// recalculate since it does not need further subdivision then.
if ((Curve.isLinear(v1) || Curve.isFlatEnough(v1, tolerance))
&& (Curve.isLinear(v2) || Curve.isFlatEnough(v2, tolerance))) {
// See if the parametric equations of the lines interesct.
addLineIntersection(v1, v2, curve1, curve2, locations, include);
} else {
// Subdivide both curves, and see if they intersect.
// If one of the curves is flat already, no further subdivion
// is required.
var v1s = Curve.subdivide(v1),
v2s = Curve.subdivide(v2);
for (var i = 0; i < 2; i++)
for (var j = 0; j < 2; j++)
addCurveIntersections(v1s[i], v2s[j], curve1, curve2,
locations, include);
}
}
/*#*/ } // !__options.fatlineClipping
2014-08-16 13:24:54 -04:00
}
/*#*/ if (__options.fatlineClipping) {
2014-08-16 13:24:54 -04:00
/**
* Calculate the convex hull for the non-parametric bezier curve D(ti, di(t))
* The ti is equally spaced across [0..1] [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the
* curve are already sorted in the X axis in the increasing order.
* Calculating convex-hull is much easier than a set of arbitrary points.
*
* The convex-hull is returned as two parts [TOP, BOTTOM]:
* (both are in a coordinate space where y increases upwards with origin at
* bottom-left)
* TOP: The part that lies above the 'median' (line connecting end points of
* the curve)
* BOTTOM: The part that lies below the median.
*/
function getConvexHull(dq0, dq1, dq2, dq3) {
var p0 = [ 0, dq0 ],
p1 = [ 1 / 3, dq1 ],
p2 = [ 2 / 3, dq2 ],
p3 = [ 1, dq3 ],
// Find signed distance of p1 and p2 from line [ p0, p3 ]
getSignedDistance = Line.getSignedDistance,
dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1),
dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2),
flip = false,
hull;
// Check if p1 and p2 are on the same side of the line [ p0, p3 ]
if (dist1 * dist2 < 0) {
// p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a
// quadrilateral and line [ p0, p3 ] is NOT part of the hull so we
// are pretty much done here.
// The top part includes p1,
// we will reverse it later if that is not the case
hull = [[p0, p1, p3], [p0, p2, p3]];
flip = dist1 < 0;
} else {
// p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be
// a triangle or a quadrilateral and line [ p0, p3 ] is part of the
// hull. Check if the hull is a triangle or a quadrilateral.
// Also, if at least one of the distances for p1 or p2, from line
// [p0, p3] is zero then hull must at most have 3 vertices.
var pmax, cross = 0,
distZero = dist1 === 0 || dist2 === 0;
if (Math.abs(dist1) > Math.abs(dist2)) {
pmax = p1;
// apex is dq3 and the other apex point is dq0 vector dqapex ->
// dqapex2 or base vector which is already part of the hull.
cross = (dq3 - dq2 - (dq3 - dq0) / 3)
* (2 * (dq3 - dq2) - dq3 + dq1) / 3;
} else {
pmax = p2;
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex -> dqapex2 or base vector which is already part
// of the hull.
cross = (dq1 - dq0 + (dq0 - dq3) / 3)
* (-2 * (dq0 - dq1) + dq0 - dq2) / 3;
}
// Compare cross products of these vectors to determine if the point
// is in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral.
hull = cross < 0 || distZero
// p2 is inside the triangle, hull is a triangle.
? [[p0, pmax, p3], [p0, p3]]
// Convex hull is a quadrilateral and we need all lines in
// correct order where line [ p0, p3 ] is part of the hull.
: [[p0, p1, p2, p3], [p0, p3]];
flip = dist1 ? dist1 < 0 : dist2 < 0;
}
return flip ? hull.reverse() : hull;
}
/**
* Clips the convex-hull and returns [tMin, tMax] for the curve contained
*/
function clipConvexHull(hullTop, hullBottom, dMin, dMax) {
var tProxy,
tVal = null,
px, py,
qx, qy;
for (var i = 0, l = hullBottom.length - 1; i < l; i++) {
py = hullBottom[i][1];
qy = hullBottom[i + 1][1];
if (py < qy) {
tProxy = null;
} else if (qy <= dMax) {
px = hullBottom[i][0];
qx = hullBottom[i + 1][0];
2014-08-25 06:49:14 -04:00
tProxy = px + (dMax - py) * (qx - px) / (qy - py);
2014-08-16 13:24:54 -04:00
} else {
// Try the next chain
continue;
}
// We got a proxy-t;
break;
}
if (hullTop[0][1] <= dMax)
tProxy = hullTop[0][0];
for (var i = 0, l = hullTop.length - 1; i < l; i++) {
py = hullTop[i][1];
qy = hullTop[i + 1][1];
if (py >= dMin) {
tVal = tProxy;
} else if (py > qy) {
tVal = null;
} else if (qy >= dMin) {
px = hullTop[i][0];
qx = hullTop[i + 1][0];
tVal = px + (dMin - py) * (qx - px) / (qy - py);
} else {
continue;
}
break;
}
return tVal;
}
/*#*/ } // __options.fatlineClipping
2014-08-16 13:24:54 -04:00
/**
* Intersections between curve and line becomes rather simple here mostly
* because of Numerical class. We can rotate the curve and line so that the
* line is on the X axis, and solve the implicit equations for the X axis
* and the curve.
*/
function addCurveLineIntersections(v1, v2, curve1, curve2, locations,
include) {
var flip = Curve.isLinear(v1),
vc = flip ? v2 : v1,
vl = flip ? v1 : v2,
lx1 = vl[0], ly1 = vl[1],
lx2 = vl[6], ly2 = vl[7],
// Rotate both curve and line around l1 so that line is on x axis.
ldx = lx2 - lx1,
ldy = ly2 - ly1,
// Calculate angle to the x-axis (1, 0).
angle = Math.atan2(-ldy, ldx),
sin = Math.sin(angle),
cos = Math.cos(angle),
// (rlx1, rly1) = (0, 0)
rlx2 = ldx * cos - ldy * sin,
// The curve values for the rotated line.
rvl = [0, 0, 0, 0, rlx2, 0, rlx2, 0],
// Calculate the curve values of the rotated curve.
rvc = [];
for(var i = 0; i < 8; i += 2) {
var x = vc[i] - lx1,
y = vc[i + 1] - ly1;
rvc.push(
x * cos - y * sin,
y * cos + x * sin);
}
var roots = [],
count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1);
// NOTE: count could be -1 for infinite solutions, but that should only
// happen with lines, in which case we should not be here.
for (var i = 0; i < count; i++) {
var tc = roots[i],
x = Curve.evaluate(rvc, tc, 0).x;
// We do have a point on the infinite line. Check if it falls on
// the line *segment*.
if (x >= 0 && x <= rlx2) {
// Find the parameter of the intersection on the rotated line.
var tl = Curve.getParameterOf(rvl, x, 0),
t1 = flip ? tl : tc,
t2 = flip ? tc : tl;
addLocation(locations, include,
curve1, t1, Curve.evaluate(v1, t1, 0),
curve2, t2, Curve.evaluate(v2, t2, 0));
}
}
}
function addLineIntersection(v1, v2, curve1, curve2, locations, include) {
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7]);
if (point) {
// We need to return the parameters for the intersection,
// since they will be used for sorting
var x = point.x,
y = point.y;
addLocation(locations, include,
curve1, Curve.getParameterOf(v1, x, y), point,
curve2, Curve.getParameterOf(v2, x, y), point);
}
}
return { statics: /** @lends Curve */{
// We need to provide the original left curve reference to the
// #getIntersections() calls as it is required to create the resulting
// CurveLocation objects.
getIntersections: function(v1, v2, curve1, curve2, locations, include) {
var linear1 = Curve.isLinear(v1),
linear2 = Curve.isLinear(v2);
(linear1 && linear2
? addLineIntersection
: linear1 || linear2
? addCurveLineIntersections
: addCurveIntersections)(
v1, v2, curve1, curve2, locations, include,
// Define the defaults for these parameters of
// addCurveIntersections():
// tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion
0, 1, 0, 1, 0, false, 0);
return locations;
}
}};
});