bgfx/examples/common/cube_atlas.cpp
2013-05-17 23:42:38 +02:00

540 lines
14 KiB
C++

/*
* Copyright 2013 Jeremie Roy. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <bx/bx.h>
#include <bgfx.h>
#include <limits.h> // INT_MAX
#include <memory.h> // memset
#include <vector>
#include "cube_atlas.h"
class RectanglePacker
{
public:
RectanglePacker();
RectanglePacker(uint32_t _width, uint32_t _height);
/// non constructor initialization
void init(uint32_t _width, uint32_t _height);
/// find a suitable position for the given rectangle
/// @return true if the rectangle can be added, false otherwise
bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY);
/// return the used surface in squared unit
uint32_t getUsedSurface()
{
return m_usedSpace;
}
/// return the total available surface in squared unit
uint32_t getTotalSurface()
{
return m_width * m_height;
}
/// return the usage ratio of the available surface [0:1]
float getUsageRatio();
/// reset to initial state
void clear();
private:
int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height);
/// Merges all skyline nodes that are at the same level.
void merge();
struct Node
{
Node(int16_t _x, int16_t _y, int16_t _width) : m_x(_x), m_y(_y), m_width(_width)
{
}
/// The starting x-coordinate (leftmost).
int16_t m_x;
/// The y-coordinate of the skyline level line.
int16_t m_y;
/// The line _width. The ending coordinate (inclusive) will be x+width-1.
int32_t m_width; // 32bit to avoid padding
};
/// width (in pixels) of the underlying texture
uint32_t m_width;
/// height (in pixels) of the underlying texture
uint32_t m_height;
/// Surface used in squared pixel
uint32_t m_usedSpace;
/// node of the skyline algorithm
std::vector<Node> m_skyline;
};
RectanglePacker::RectanglePacker() : m_width(0), m_height(0), m_usedSpace(0)
{
}
RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height) : m_width(_width), m_height(_height), m_usedSpace(0)
{
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1, 1, _width - 2) );
}
void RectanglePacker::init(uint32_t _width, uint32_t _height)
{
BX_CHECK(_width > 2, "_width must be > 2");
BX_CHECK(_height > 2, "_height must be > 2");
m_width = _width;
m_height = _height;
m_usedSpace = 0;
m_skyline.clear();
// We want a one pixel border around the whole atlas to avoid any artifact when
// sampling texture
m_skyline.push_back(Node(1, 1, _width - 2) );
}
bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY)
{
int y, best_height, best_index;
int32_t best_width;
Node* node;
Node* prev;
_outX = 0;
_outY = 0;
uint32_t ii;
best_height = INT_MAX;
best_index = -1;
best_width = INT_MAX;
for (ii = 0; ii < m_skyline.size(); ++ii)
{
y = fit(ii, _width, _height);
if (y >= 0)
{
node = &m_skyline[ii];
if ( ( (y + _height) < best_height)
|| ( ( (y + _height) == best_height)
&& (node->m_width < best_width) ) )
{
best_height = y + _height;
best_index = ii;
best_width = node->m_width;
_outX = node->m_x;
_outY = y;
}
}
}
if (best_index == -1)
{
return false;
}
Node newNode(_outX, _outY + _height, _width);
m_skyline.insert(m_skyline.begin() + best_index, newNode);
for (ii = best_index + 1; ii < m_skyline.size(); ++ii)
{
node = &m_skyline[ii];
prev = &m_skyline[ii - 1];
if (node->m_x < (prev->m_x + prev->m_width) )
{
int shrink = prev->m_x + prev->m_width - node->m_x;
node->m_x += shrink;
node->m_width -= shrink;
if (node->m_width <= 0)
{
m_skyline.erase(m_skyline.begin() + ii);
--ii;
}
else
{
break;
}
}
else
{
break;
}
}
merge();
m_usedSpace += _width * _height;
return true;
}
float RectanglePacker::getUsageRatio()
{
uint32_t total = m_width * m_height;
if (total > 0)
{
return (float) m_usedSpace / (float) total;
}
else
{
return 0.0f;
}
}
void RectanglePacker::clear()
{
m_skyline.clear();
m_usedSpace = 0;
// We want a one pixel border around the whole atlas to avoid any artefact when
// sampling texture
m_skyline.push_back(Node(1, 1, m_width - 2) );
}
int32_t RectanglePacker::fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height)
{
int32_t width = _width;
int32_t height = _height;
const Node& baseNode = m_skyline[_skylineNodeIndex];
int32_t x = baseNode.m_x, y;
int32_t _width_left = width;
int32_t i = _skylineNodeIndex;
if ( (x + width) > (int32_t)(m_width - 1) )
{
return -1;
}
y = baseNode.m_y;
while (_width_left > 0)
{
const Node& node = m_skyline[i];
if (node.m_y > y)
{
y = node.m_y;
}
if ( (y + height) > (int32_t)(m_height - 1) )
{
return -1;
}
_width_left -= node.m_width;
++i;
}
return y;
}
void RectanglePacker::merge()
{
Node* node;
Node* next;
uint32_t ii;
for (ii = 0; ii < m_skyline.size() - 1; ++ii)
{
node = (Node*) &m_skyline[ii];
next = (Node*) &m_skyline[ii + 1];
if (node->m_y == next->m_y)
{
node->m_width += next->m_width;
m_skyline.erase(m_skyline.begin() + ii + 1);
--ii;
}
}
}
struct Atlas::PackedLayer
{
RectanglePacker packer;
AtlasRegion faceRegion;
};
Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount)
{
BX_CHECK(_textureSize >= 64
&& _textureSize <= 4096, "suspicious texture size");
BX_CHECK(_maxRegionsCount >= 64
&& _maxRegionsCount <= 32000, "suspicious _regions count");
m_layers = new PackedLayer[24];
for (int ii = 0; ii < 24; ++ii)
{
m_layers[ii].packer.init(_textureSize, _textureSize);
}
m_usedLayers = 0;
m_usedFaces = 0;
m_textureSize = _textureSize;
m_regionCount = 0;
m_maxRegionCount = _maxRegionsCount;
m_regions = new AtlasRegion[_maxRegionsCount];
m_textureBuffer = new uint8_t[ _textureSize * _textureSize * 6 * 4 ];
memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4);
//BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT;
//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT
//BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP
uint32_t flags = 0; // BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
//Uncomment this to debug atlas
//const bgfx::Memory* mem = bgfx::alloc(textureSize*textureSize * 6 * 4);
//memset(mem->data, 255, mem->size);
const bgfx::Memory* mem = NULL;
m_textureHandle = bgfx::createTextureCube(6
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
, mem
);
}
Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount)
{
BX_CHECK(_regionCount <= 64
&& _maxRegionsCount <= 4096, "suspicious initialization");
//layers are frozen
m_usedLayers = 24;
m_usedFaces = 6;
m_textureSize = _textureSize;
m_regionCount = _regionCount;
//regions are frozen
if (_regionCount < _maxRegionsCount)
{
m_maxRegionCount = _regionCount;
}
else
{
m_maxRegionCount = _maxRegionsCount;
}
m_regions = new AtlasRegion[_regionCount];
m_textureBuffer = new uint8_t[getTextureBufferSize()];
//BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT;
//BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT
//BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP
uint32_t flags = 0; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT;
memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion) );
memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize() );
m_textureHandle = bgfx::createTextureCube(6
, _textureSize
, 1
, bgfx::TextureFormat::BGRA8
, flags
, bgfx::makeRef(m_textureBuffer, getTextureBufferSize() )
);
}
Atlas::~Atlas()
{
delete[] m_layers;
delete[] m_regions;
delete[] m_textureBuffer;
}
uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type, uint16_t outline)
{
if (m_regionCount >= m_maxRegionCount)
{
return UINT16_MAX;
}
uint16_t x = 0, y = 0;
// We want each bitmap to be separated by at least one black pixel
// TODO manage mipmaps
uint32_t idx = 0;
while (idx < m_usedLayers)
{
if (m_layers[idx].faceRegion.getType() == _type)
{
if (m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) )
{
break;
}
}
idx++;
}
if (idx >= m_usedLayers)
{
//do we have still room to add layers ?
if ( (idx + _type) > 24
|| m_usedFaces >= 6)
{
return UINT16_MAX;
}
//create new layers
for (int ii = 0; ii < _type; ++ii)
{
m_layers[idx + ii].faceRegion.m_x = 0;
m_layers[idx + ii].faceRegion.m_y = 0;
m_layers[idx + ii].faceRegion.m_width = m_textureSize;
m_layers[idx + ii].faceRegion.m_height = m_textureSize;
m_layers[idx + ii].faceRegion.setMask(_type, m_usedFaces, ii);
}
m_usedLayers += _type;
m_usedFaces++;
//add it to the created layer
if (!m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) )
{
return UINT16_MAX;
}
}
AtlasRegion& region = m_regions[m_regionCount];
region.m_x = x;
region.m_y = y;
region.m_width = _width;
region.m_height = _height;
region.m_mask = m_layers[idx].faceRegion.m_mask;
updateRegion(region, _bitmapBuffer);
region.m_x += outline;
region.m_y += outline;
region.m_width -= (outline * 2);
region.m_height -= (outline * 2);
return m_regionCount++;
}
void Atlas::updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer)
{
const bgfx::Memory* mem = bgfx::alloc(_region.m_width * _region.m_height * 4);
//BAD!
memset(mem->data, 0, mem->size);
if (_region.getType() == AtlasRegion::TYPE_BGRA8)
{
const uint8_t* inLineBuffer = _bitmapBuffer;
uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4);
//update the cpu buffer
for (int yy = 0; yy < _region.m_height; ++yy)
{
memcpy(outLineBuffer, inLineBuffer, _region.m_width * 4);
inLineBuffer += _region.m_width * 4;
outLineBuffer += m_textureSize * 4;
}
//update the GPU buffer
memcpy(mem->data, _bitmapBuffer, mem->size);
}
else
{
uint32_t layer = _region.getComponentIndex();
//uint32_t face = _region.getFaceIndex();
const uint8_t* inLineBuffer = _bitmapBuffer;
uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4) );
//update the cpu buffer
for (int yy = 0; yy < _region.m_height; ++yy)
{
for (int xx = 0; xx < _region.m_width; ++xx)
{
outLineBuffer[(xx * 4) + layer] = inLineBuffer[xx];
}
//update the GPU buffer
memcpy(mem->data + yy * _region.m_width * 4, outLineBuffer, _region.m_width * 4);
inLineBuffer += _region.m_width;
outLineBuffer += m_textureSize * 4;
}
}
bgfx::updateTextureCube(m_textureHandle, (uint8_t)_region.getFaceIndex(), 0, _region.m_x, _region.m_y, _region.m_width, _region.m_height, mem);
}
void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
packUV(m_layers[_idx].faceRegion, _vertexBuffer, _offset, _stride);
}
void Atlas::packUV(uint16_t handle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
const AtlasRegion& region = m_regions[handle];
packUV(region, _vertexBuffer, _offset, _stride);
}
void Atlas::packUV(const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride)
{
float texMult = 65535.0f / ( (float)(m_textureSize) );
static const int16_t minVal = -32768;
static const int16_t maxVal = 32767;
int16_t x0 = (int16_t)(_region.m_x * texMult) - 32767;
int16_t y0 = (int16_t)(_region.m_y * texMult) - 32767;
int16_t x1 = (int16_t)( (_region.m_x + _region.m_width) * texMult) - 32767;
int16_t y1 = (int16_t)( (_region.m_y + _region.m_height) * texMult) - 32767;
int16_t w = (int16_t) ( (32767.0f / 4.0f) * _region.getComponentIndex() );
_vertexBuffer += _offset;
switch (_region.getFaceIndex() )
{
case 0: // +X
x0 = -x0;
x1 = -x1;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, maxVal, y0, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y1, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y1, x1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, maxVal, y0, x1, w); _vertexBuffer += _stride;
break;
case 1: // -X
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, minVal, y0, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y1, x0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y1, x1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, minVal, y0, x1, w); _vertexBuffer += _stride;
break;
case 2: // +Y
writeUV(_vertexBuffer, x0, maxVal, y0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, maxVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, maxVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, maxVal, y0, w); _vertexBuffer += _stride;
break;
case 3: // -Y
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, minVal, y0, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, minVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, minVal, y1, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, minVal, y0, w); _vertexBuffer += _stride;
break;
case 4: // +Z
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, y0, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, y1, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y1, maxVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y0, maxVal, w); _vertexBuffer += _stride;
break;
case 5: // -Z
x0 = -x0;
x1 = -x1;
y0 = -y0;
y1 = -y1;
writeUV(_vertexBuffer, x0, y0, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x0, y1, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y1, minVal, w); _vertexBuffer += _stride;
writeUV(_vertexBuffer, x1, y0, minVal, w); _vertexBuffer += _stride;
break;
}
}