/* * Copyright 2013 Jeremie Roy. All rights reserved. * License: http://www.opensource.org/licenses/BSD-2-Clause */ #include #include #include // INT_MAX #include // memset #include #include "cube_atlas.h" class RectanglePacker { public: RectanglePacker(); RectanglePacker(uint32_t _width, uint32_t _height); /// non constructor initialization void init(uint32_t _width, uint32_t _height); /// find a suitable position for the given rectangle /// @return true if the rectangle can be added, false otherwise bool addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY); /// return the used surface in squared unit uint32_t getUsedSurface() { return m_usedSpace; } /// return the total available surface in squared unit uint32_t getTotalSurface() { return m_width * m_height; } /// return the usage ratio of the available surface [0:1] float getUsageRatio(); /// reset to initial state void clear(); private: int32_t fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height); /// Merges all skyline nodes that are at the same level. void merge(); struct Node { Node(int16_t _x, int16_t _y, int16_t _width) : m_x(_x), m_y(_y), m_width(_width) { } /// The starting x-coordinate (leftmost). int16_t m_x; /// The y-coordinate of the skyline level line. int16_t m_y; /// The line _width. The ending coordinate (inclusive) will be x+width-1. int32_t m_width; // 32bit to avoid padding }; /// width (in pixels) of the underlying texture uint32_t m_width; /// height (in pixels) of the underlying texture uint32_t m_height; /// Surface used in squared pixel uint32_t m_usedSpace; /// node of the skyline algorithm std::vector m_skyline; }; RectanglePacker::RectanglePacker() : m_width(0), m_height(0), m_usedSpace(0) { } RectanglePacker::RectanglePacker(uint32_t _width, uint32_t _height) : m_width(_width), m_height(_height), m_usedSpace(0) { // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1, 1, _width - 2) ); } void RectanglePacker::init(uint32_t _width, uint32_t _height) { BX_CHECK(_width > 2, "_width must be > 2"); BX_CHECK(_height > 2, "_height must be > 2"); m_width = _width; m_height = _height; m_usedSpace = 0; m_skyline.clear(); // We want a one pixel border around the whole atlas to avoid any artifact when // sampling texture m_skyline.push_back(Node(1, 1, _width - 2) ); } bool RectanglePacker::addRectangle(uint16_t _width, uint16_t _height, uint16_t& _outX, uint16_t& _outY) { int y, best_height, best_index; int32_t best_width; Node* node; Node* prev; _outX = 0; _outY = 0; uint32_t ii; best_height = INT_MAX; best_index = -1; best_width = INT_MAX; for (ii = 0; ii < m_skyline.size(); ++ii) { y = fit(ii, _width, _height); if (y >= 0) { node = &m_skyline[ii]; if ( ( (y + _height) < best_height) || ( ( (y + _height) == best_height) && (node->m_width < best_width) ) ) { best_height = y + _height; best_index = ii; best_width = node->m_width; _outX = node->m_x; _outY = y; } } } if (best_index == -1) { return false; } Node newNode(_outX, _outY + _height, _width); m_skyline.insert(m_skyline.begin() + best_index, newNode); for (ii = best_index + 1; ii < m_skyline.size(); ++ii) { node = &m_skyline[ii]; prev = &m_skyline[ii - 1]; if (node->m_x < (prev->m_x + prev->m_width) ) { int shrink = prev->m_x + prev->m_width - node->m_x; node->m_x += shrink; node->m_width -= shrink; if (node->m_width <= 0) { m_skyline.erase(m_skyline.begin() + ii); --ii; } else { break; } } else { break; } } merge(); m_usedSpace += _width * _height; return true; } float RectanglePacker::getUsageRatio() { uint32_t total = m_width * m_height; if (total > 0) { return (float) m_usedSpace / (float) total; } else { return 0.0f; } } void RectanglePacker::clear() { m_skyline.clear(); m_usedSpace = 0; // We want a one pixel border around the whole atlas to avoid any artefact when // sampling texture m_skyline.push_back(Node(1, 1, m_width - 2) ); } int32_t RectanglePacker::fit(uint32_t _skylineNodeIndex, uint16_t _width, uint16_t _height) { int32_t width = _width; int32_t height = _height; const Node& baseNode = m_skyline[_skylineNodeIndex]; int32_t x = baseNode.m_x, y; int32_t _width_left = width; int32_t i = _skylineNodeIndex; if ( (x + width) > (int32_t)(m_width - 1) ) { return -1; } y = baseNode.m_y; while (_width_left > 0) { const Node& node = m_skyline[i]; if (node.m_y > y) { y = node.m_y; } if ( (y + height) > (int32_t)(m_height - 1) ) { return -1; } _width_left -= node.m_width; ++i; } return y; } void RectanglePacker::merge() { Node* node; Node* next; uint32_t ii; for (ii = 0; ii < m_skyline.size() - 1; ++ii) { node = (Node*) &m_skyline[ii]; next = (Node*) &m_skyline[ii + 1]; if (node->m_y == next->m_y) { node->m_width += next->m_width; m_skyline.erase(m_skyline.begin() + ii + 1); --ii; } } } struct Atlas::PackedLayer { RectanglePacker packer; AtlasRegion faceRegion; }; Atlas::Atlas(uint16_t _textureSize, uint16_t _maxRegionsCount) { BX_CHECK(_textureSize >= 64 && _textureSize <= 4096, "suspicious texture size"); BX_CHECK(_maxRegionsCount >= 64 && _maxRegionsCount <= 32000, "suspicious _regions count"); m_layers = new PackedLayer[24]; for (int ii = 0; ii < 24; ++ii) { m_layers[ii].packer.init(_textureSize, _textureSize); } m_usedLayers = 0; m_usedFaces = 0; m_textureSize = _textureSize; m_regionCount = 0; m_maxRegionCount = _maxRegionsCount; m_regions = new AtlasRegion[_maxRegionsCount]; m_textureBuffer = new uint8_t[ _textureSize * _textureSize * 6 * 4 ]; memset(m_textureBuffer, 0, _textureSize * _textureSize * 6 * 4); //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0; // BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; //Uncomment this to debug atlas //const bgfx::Memory* mem = bgfx::alloc(textureSize*textureSize * 6 * 4); //memset(mem->data, 255, mem->size); const bgfx::Memory* mem = NULL; m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags , mem ); } Atlas::Atlas(uint16_t _textureSize, const uint8_t* _textureBuffer, uint16_t _regionCount, const uint8_t* _regionBuffer, uint16_t _maxRegionsCount) { BX_CHECK(_regionCount <= 64 && _maxRegionsCount <= 4096, "suspicious initialization"); //layers are frozen m_usedLayers = 24; m_usedFaces = 6; m_textureSize = _textureSize; m_regionCount = _regionCount; //regions are frozen if (_regionCount < _maxRegionsCount) { m_maxRegionCount = _regionCount; } else { m_maxRegionCount = _maxRegionsCount; } m_regions = new AtlasRegion[_regionCount]; m_textureBuffer = new uint8_t[getTextureBufferSize()]; //BGFX_TEXTURE_MIN_POINT|BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIP_POINT; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT //BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP uint32_t flags = 0; //BGFX_TEXTURE_MIN_ANISOTROPIC|BGFX_TEXTURE_MAG_ANISOTROPIC|BGFX_TEXTURE_MIP_POINT; memcpy(m_regions, _regionBuffer, _regionCount * sizeof(AtlasRegion) ); memcpy(m_textureBuffer, _textureBuffer, getTextureBufferSize() ); m_textureHandle = bgfx::createTextureCube(6 , _textureSize , 1 , bgfx::TextureFormat::BGRA8 , flags , bgfx::makeRef(m_textureBuffer, getTextureBufferSize() ) ); } Atlas::~Atlas() { delete[] m_layers; delete[] m_regions; delete[] m_textureBuffer; } uint16_t Atlas::addRegion(uint16_t _width, uint16_t _height, const uint8_t* _bitmapBuffer, AtlasRegion::Type _type, uint16_t outline) { if (m_regionCount >= m_maxRegionCount) { return UINT16_MAX; } uint16_t x = 0, y = 0; // We want each bitmap to be separated by at least one black pixel // TODO manage mipmaps uint32_t idx = 0; while (idx < m_usedLayers) { if (m_layers[idx].faceRegion.getType() == _type) { if (m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) ) { break; } } idx++; } if (idx >= m_usedLayers) { //do we have still room to add layers ? if ( (idx + _type) > 24 || m_usedFaces >= 6) { return UINT16_MAX; } //create new layers for (int ii = 0; ii < _type; ++ii) { m_layers[idx + ii].faceRegion.m_x = 0; m_layers[idx + ii].faceRegion.m_y = 0; m_layers[idx + ii].faceRegion.m_width = m_textureSize; m_layers[idx + ii].faceRegion.m_height = m_textureSize; m_layers[idx + ii].faceRegion.setMask(_type, m_usedFaces, ii); } m_usedLayers += _type; m_usedFaces++; //add it to the created layer if (!m_layers[idx].packer.addRectangle(_width + 1, _height + 1, x, y) ) { return UINT16_MAX; } } AtlasRegion& region = m_regions[m_regionCount]; region.m_x = x; region.m_y = y; region.m_width = _width; region.m_height = _height; region.m_mask = m_layers[idx].faceRegion.m_mask; updateRegion(region, _bitmapBuffer); region.m_x += outline; region.m_y += outline; region.m_width -= (outline * 2); region.m_height -= (outline * 2); return m_regionCount++; } void Atlas::updateRegion(const AtlasRegion& _region, const uint8_t* _bitmapBuffer) { const bgfx::Memory* mem = bgfx::alloc(_region.m_width * _region.m_height * 4); //BAD! memset(mem->data, 0, mem->size); if (_region.getType() == AtlasRegion::TYPE_BGRA8) { const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4); //update the cpu buffer for (int yy = 0; yy < _region.m_height; ++yy) { memcpy(outLineBuffer, inLineBuffer, _region.m_width * 4); inLineBuffer += _region.m_width * 4; outLineBuffer += m_textureSize * 4; } //update the GPU buffer memcpy(mem->data, _bitmapBuffer, mem->size); } else { uint32_t layer = _region.getComponentIndex(); //uint32_t face = _region.getFaceIndex(); const uint8_t* inLineBuffer = _bitmapBuffer; uint8_t* outLineBuffer = (m_textureBuffer + _region.getFaceIndex() * (m_textureSize * m_textureSize * 4) + ( ( (_region.m_y * m_textureSize) + _region.m_x) * 4) ); //update the cpu buffer for (int yy = 0; yy < _region.m_height; ++yy) { for (int xx = 0; xx < _region.m_width; ++xx) { outLineBuffer[(xx * 4) + layer] = inLineBuffer[xx]; } //update the GPU buffer memcpy(mem->data + yy * _region.m_width * 4, outLineBuffer, _region.m_width * 4); inLineBuffer += _region.m_width; outLineBuffer += m_textureSize * 4; } } bgfx::updateTextureCube(m_textureHandle, (uint8_t)_region.getFaceIndex(), 0, _region.m_x, _region.m_y, _region.m_width, _region.m_height, mem); } void Atlas::packFaceLayerUV(uint32_t _idx, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) { packUV(m_layers[_idx].faceRegion, _vertexBuffer, _offset, _stride); } void Atlas::packUV(uint16_t handle, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) { const AtlasRegion& region = m_regions[handle]; packUV(region, _vertexBuffer, _offset, _stride); } void Atlas::packUV(const AtlasRegion& _region, uint8_t* _vertexBuffer, uint32_t _offset, uint32_t _stride) { float texMult = 65535.0f / ( (float)(m_textureSize) ); static const int16_t minVal = -32768; static const int16_t maxVal = 32767; int16_t x0 = (int16_t)(_region.m_x * texMult) - 32767; int16_t y0 = (int16_t)(_region.m_y * texMult) - 32767; int16_t x1 = (int16_t)( (_region.m_x + _region.m_width) * texMult) - 32767; int16_t y1 = (int16_t)( (_region.m_y + _region.m_height) * texMult) - 32767; int16_t w = (int16_t) ( (32767.0f / 4.0f) * _region.getComponentIndex() ); _vertexBuffer += _offset; switch (_region.getFaceIndex() ) { case 0: // +X x0 = -x0; x1 = -x1; y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, maxVal, y0, x0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, maxVal, y1, x0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, maxVal, y1, x1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, maxVal, y0, x1, w); _vertexBuffer += _stride; break; case 1: // -X y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, minVal, y0, x0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, minVal, y1, x0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, minVal, y1, x1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, minVal, y0, x1, w); _vertexBuffer += _stride; break; case 2: // +Y writeUV(_vertexBuffer, x0, maxVal, y0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, maxVal, y1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, maxVal, y1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, maxVal, y0, w); _vertexBuffer += _stride; break; case 3: // -Y y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, minVal, y0, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, minVal, y1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, minVal, y1, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, minVal, y0, w); _vertexBuffer += _stride; break; case 4: // +Z y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, y0, maxVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, y1, maxVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y1, maxVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y0, maxVal, w); _vertexBuffer += _stride; break; case 5: // -Z x0 = -x0; x1 = -x1; y0 = -y0; y1 = -y1; writeUV(_vertexBuffer, x0, y0, minVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x0, y1, minVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y1, minVal, w); _vertexBuffer += _stride; writeUV(_vertexBuffer, x1, y0, minVal, w); _vertexBuffer += _stride; break; } }