isle/LEGO1/realtime/matrix.h
jonschz 6382347f73
Refactor Matrix4::ToQuaternion() (#879)
* Refactor Matrix4::ToQuaternion()

* fix CI errors

* Apply feedback by @foxtacles

* run formatter

---------

Co-authored-by: jonschz <jonschz@users.noreply.github.com>
2024-05-03 14:08:58 -04:00

244 lines
6.2 KiB
C++

#ifndef MATRIX_H
#define MATRIX_H
#include "vector.h"
#include <memory.h>
struct UnknownMatrixType {
float m_data[4][4];
};
// Note: Many functions most likely take const references/pointers instead of non-const.
// The class needs to undergo a very careful refactoring to fix that (no matches should break).
// VTABLE: LEGO1 0x100d4350
// SIZE 0x08
class Matrix4 {
public:
inline Matrix4(float (*p_data)[4]) { SetData(p_data); }
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
// FUNCTION: LEGO1 0x10002320
virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04
// FUNCTION: LEGO1 0x10002340
virtual void Equals(const Matrix4& p_matrix)
{
memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4);
} // vtable+0x00
// FUNCTION: LEGO1 0x10002360
virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c
// FUNCTION: LEGO1 0x10002370
virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; } // vtable+0x08
// FUNCTION: LEGO1 0x10002380
virtual float (*GetData())[4] { return m_data; } // vtable+0x14
// FUNCTION: LEGO1 0x10002390
virtual float (*GetData() const)[4] { return m_data; } // vtable+0x10
// FUNCTION: LEGO1 0x100023a0
virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c
// FUNCTION: LEGO1 0x100023c0
virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; } // vtable+0x18
// FUNCTION: LEGO1 0x100023e0
virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); } // vtable+0x20
// FUNCTION: LEGO1 0x100023f0
virtual void SetIdentity()
{
Clear();
m_data[0][0] = 1.0f;
m_data[1][1] = 1.0f;
m_data[2][2] = 1.0f;
m_data[3][3] = 1.0f;
} // vtable+0x24
// FUNCTION: LEGO1 0x10002420
virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28
// FUNCTION: LEGO1 0x10002430
virtual Matrix4& operator+=(float (*p_data)[4])
{
for (int i = 0; i < 16; i++) {
((float*) m_data)[i] += ((float*) p_data)[i];
}
return *this;
} // vtable+0x2c
// FUNCTION: LEGO1 0x10002460
virtual void TranslateBy(const float& p_x, const float& p_y, const float& p_z)
{
m_data[3][0] += p_x;
m_data[3][1] += p_y;
m_data[3][2] += p_z;
} // vtable+0x30
// FUNCTION: LEGO1 0x100024a0
virtual void SetTranslation(const float& p_x, const float& p_y, const float& p_z)
{
m_data[3][0] = p_x;
m_data[3][1] = p_y;
m_data[3][2] = p_z;
} // vtable+0x34
// FUNCTION: LEGO1 0x100024d0
virtual void Product(float (*p_a)[4], float (*p_b)[4])
{
float* cur = (float*) m_data;
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
*cur = 0.0f;
for (int k = 0; k < 4; k++) {
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
} // vtable+0x3c
// FUNCTION: LEGO1 0x10002530
virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38
// FUNCTION: LEGO1 0x100a0ff0
inline void Scale(const float& p_x, const float& p_y, const float& p_z)
{
for (int i = 0; i < 4; i++) {
m_data[i][0] *= p_x;
m_data[i][1] *= p_y;
m_data[i][2] *= p_z;
}
}
inline void RotateX(const float& p_angle)
{
float s = sin(p_angle);
float c = cos(p_angle);
float matrix[4][4];
memcpy(matrix, m_data, sizeof(float) * 16);
for (int i = 0; i < 4; i++) {
m_data[i][1] = matrix[i][1] * c - matrix[i][2] * s;
m_data[i][2] = matrix[i][2] * c + matrix[i][1] * s;
}
}
inline void RotateZ(const float& p_angle)
{
float s = sin(p_angle);
float c = cos(p_angle);
float matrix[4][4];
memcpy(matrix, m_data, sizeof(float) * 16);
for (int i = 0; i < 4; i++) {
m_data[i][0] = matrix[i][0] * c - matrix[i][1] * s;
m_data[i][1] = matrix[i][1] * c + matrix[i][0] * s;
}
}
inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40
inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44
float* operator[](int idx) { return m_data[idx]; }
const float* operator[](int idx) const { return m_data[idx]; }
protected:
float (*m_data)[4];
};
// FUNCTION: LEGO1 0x10002550
inline void Matrix4::ToQuaternion(Vector4& p_outQuat)
{
float trace = m_data[0][0] + m_data[1][1] + m_data[2][2];
if (trace > 0) {
trace = sqrt(trace + 1.0);
p_outQuat[3] = trace * 0.5f;
trace = 0.5f / trace;
p_outQuat[0] = (m_data[2][1] - m_data[1][2]) * trace;
p_outQuat[1] = (m_data[0][2] - m_data[2][0]) * trace;
p_outQuat[2] = (m_data[1][0] - m_data[0][1]) * trace;
}
else {
// GLOBAL: LEGO1 0x100d4090
static int rotateIndex[] = {1, 2, 0};
// Largest element along the trace
int largest = 0;
if (m_data[0][0] < m_data[1][1]) {
largest = 1;
}
if (*Element(largest, largest) < m_data[2][2]) {
largest = 2;
}
int next = rotateIndex[largest];
int nextNext = rotateIndex[next];
float trace = sqrt(*Element(largest, largest) - (*Element(nextNext, nextNext) + *Element(next, next)) + 1.0);
p_outQuat[largest] = trace * 0.5f;
trace = 0.5f / trace;
p_outQuat[3] = (*Element(nextNext, next) - *Element(next, nextNext)) * trace;
p_outQuat[next] = (*Element(largest, next) + *Element(next, largest)) * trace;
p_outQuat[nextNext] = (*Element(largest, nextNext) + *Element(nextNext, largest)) * trace;
}
}
// FUNCTION: LEGO1 0x10002710
inline int Matrix4::FromQuaternion(const Vector4& p_vec)
{
float len = p_vec.LenSquared();
if (len > 0.0f) {
float v7 = 2.0f / len;
float v9 = p_vec[0] * v7;
float v11 = p_vec[1] * v7;
float v12 = p_vec[2] * v7;
float v13 = p_vec[3] * v9;
float v14 = p_vec[3] * v11;
float v16 = p_vec[3] * v12;
float v17 = p_vec[0] * v9;
float v22 = p_vec[0] * v11;
float v23 = p_vec[0] * v12;
float v18 = p_vec[1] * v11;
float v24 = p_vec[1] * v12;
float v19 = p_vec[2] * v12;
m_data[0][0] = 1.0f - (v18 + v19);
m_data[1][0] = v22 + v16;
m_data[2][0] = v23 - v14;
m_data[0][1] = v22 - v16;
m_data[1][1] = 1.0f - (v17 + v19);
m_data[2][1] = v24 + v13;
m_data[0][2] = v14 + v23;
m_data[1][2] = v24 - v13;
m_data[2][2] = 1.0f - (v18 + v17);
m_data[3][0] = 0;
m_data[3][1] = 0;
m_data[3][2] = 0;
m_data[3][3] = 1.0f;
m_data[0][3] = 0;
m_data[1][3] = 0;
m_data[2][3] = 0;
return 0;
}
return -1;
}
#endif // MATRIX_H