isle/LEGO1/realtime/matrix.h

207 lines
5.9 KiB
C
Raw Normal View History

#ifndef MATRIX_H
#define MATRIX_H
#include "vector.h"
2024-01-12 19:34:38 -05:00
#include <memory.h>
2024-01-12 19:34:38 -05:00
struct UnknownMatrixType {
float m_data[4][4];
};
// Note: Many functions most likely take const references/pointers instead of non-const.
// The class needs to undergo a very careful refactoring to fix that (no matches should break).
(Proposal) Adjustments to "decomp" language (#308) * Adjustments to "decomp" language * Fix a comment * Fix accidental clang-formatting * Fix order * Fix order * Remove junk * Fix OFFSET * Adjustments based on new suggestions * Annotate globals * Globals in ISLE * More globals * Merge from parser2 branch * Allow prepending space for exact marker match * To eliminate noise, require the 0x prefix on offset for marker match * fix test from previous * Count tab stops for indented functions to reduce MISSED_END_OF_FUNCTION noise * FUNCTION to SYNTHETIC where needed * Missed marker conversion on SetAtomId * pylint cleanup, remove unused code * Fix unexpected function end, add more unit tests * Be more strict about synthetic name syntax * Revert "Missed marker conversion on SetAtomId" This reverts commit d87d665127fae7dd6e5bd48d9af14a0a829bf9e2. * Revert "FUNCTION to SYNTHETIC where needed" This reverts commit 8c815418d261ba8c5f67a9a2cae349fe4ac92db8. * Implicit lookup by name for functions * Fix VTABLE SYNTHETIC and other decomp markers * Get vtable class name * Vtable marker should identify struct * No colon for SIZE comment * Update README.md * Update README.md * Update CONTRIBUTING.md * Update README.md * Update README.md * Update CONTRIBUTING.md * Update README.md * Update CONTRIBUTING.md * Fix destructor/annotation * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md --------- Co-authored-by: disinvite <disinvite@users.noreply.github.com>
2023-12-06 07:10:45 -05:00
// VTABLE: LEGO1 0x100d4350
// SIZE 0x08
2024-01-12 19:34:38 -05:00
class Matrix4 {
public:
2024-01-12 19:34:38 -05:00
inline Matrix4(float (*p_data)[4]) { SetData(p_data); }
// Note: virtual function overloads appear in the virtual table
// in reverse order of appearance.
// FUNCTION: LEGO1 0x10002320
virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04
// FUNCTION: LEGO1 0x10002340
virtual void Equals(const Matrix4& p_matrix)
{
memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4);
} // vtable+0x00
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x10002360
virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c
// FUNCTION: LEGO1 0x10002370
virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; } // vtable+0x08
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x10002380
virtual float (*GetData())[4] { return m_data; } // vtable+0x14
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x10002390
virtual float (*GetData() const)[4] { return m_data; } // vtable+0x10
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x100023a0
virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c
// FUNCTION: LEGO1 0x100023c0
virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; } // vtable+0x18
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x100023e0
virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); } // vtable+0x20
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x100023f0
virtual void SetIdentity()
{
Clear();
m_data[0][0] = 1.0f;
m_data[1][1] = 1.0f;
m_data[2][2] = 1.0f;
m_data[3][3] = 1.0f;
} // vtable+0x24
// FUNCTION: LEGO1 0x10002420
2024-01-12 19:34:38 -05:00
virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28
// FUNCTION: LEGO1 0x10002430
virtual Matrix4& operator+=(float (*p_data)[4])
{
for (int i = 0; i < 16; i++) {
2024-01-12 19:34:38 -05:00
((float*) m_data)[i] += ((float*) p_data)[i];
}
2024-01-12 19:34:38 -05:00
return *this;
} // vtable+0x2c
// FUNCTION: LEGO1 0x10002460
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z)
{
m_data[3][0] += *p_x;
m_data[3][1] += *p_y;
m_data[3][2] += *p_z;
} // vtable+0x30
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x100024a0
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z)
{
m_data[3][0] = *p_x;
m_data[3][1] = *p_y;
m_data[3][2] = *p_z;
} // vtable+0x34
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x100024d0
virtual void Product(float (*p_a)[4], float (*p_b)[4])
{
float* cur = (float*) m_data;
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
*cur = 0.0f;
for (int k = 0; k < 4; k++) {
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
} // vtable+0x3c
2024-01-12 19:34:38 -05:00
// FUNCTION: LEGO1 0x10002530
virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38
// FUNCTION: LEGO1 0x100a0ff0
inline void Scale(const float& p_x, const float& p_y, const float& p_z)
{
for (int i = 0; i < 4; i++) {
m_data[i][0] *= p_x;
m_data[i][1] *= p_y;
m_data[i][2] *= p_z;
}
}
inline void RotateX(const float& p_angle)
{
float s = sin(p_angle);
float c = cos(p_angle);
float matrix[4][4];
memcpy(matrix, m_data, sizeof(float) * 16);
for (int i = 0; i < 4; i++) {
m_data[i][1] = matrix[i][1] * c - matrix[i][2] * s;
m_data[i][2] = matrix[i][2] * c + matrix[i][1] * s;
}
}
inline void RotateZ(const float& p_angle)
{
float s = sin(p_angle);
float c = cos(p_angle);
float matrix[4][4];
memcpy(matrix, m_data, sizeof(float) * 16);
for (int i = 0; i < 4; i++) {
m_data[i][0] = matrix[i][0] * c - matrix[i][1] * s;
m_data[i][1] = matrix[i][1] * c + matrix[i][0] * s;
}
}
2024-01-12 19:34:38 -05:00
inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40
inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44
float* operator[](size_t idx) { return m_data[idx]; }
const float* operator[](size_t idx) const { return m_data[idx]; }
protected:
2024-01-12 19:34:38 -05:00
float (*m_data)[4];
};
2024-01-12 19:34:38 -05:00
// Not close, Ghidra struggles understinging this method so it will have to
// be manually worked out. Included since I at least figured out what it was
// doing with rotateIndex and what overall operation it's trying to do.
// STUB: LEGO1 0x10002550
inline void Matrix4::ToQuaternion(Vector4& p_outQuat)
{
/*
float trace = m_data[0] + m_data[5] + m_data[10];
if (trace > 0) {
trace = sqrt(trace + 1.0);
p_outQuat->GetData()[3] = trace * 0.5f;
p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace;
p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace;
p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace;
return;
}
2024-01-12 19:34:38 -05:00
// ~GLOBAL: LEGO1 0x100d4090
static int rotateIndex[] = {1, 2, 0};
2024-01-12 19:34:38 -05:00
// Largest element along the trace
int largest = m_data[0] < m_data[5];
if (*Element(largest, largest) < m_data[10])
largest = 2;
int next = rotateIndex[largest];
int nextNext = rotateIndex[next];
float valueA = *Element(nextNext, nextNext);
float valueB = *Element(next, next);
float valueC = *Element(largest, largest);
// Above is somewhat decomped, below is pure speculation since the automatic
// decomp becomes very garbled.
float traceValue = sqrt(valueA - valueB - valueC + 1.0);
p_outQuat->GetData()[largest] = traceValue * 0.5f;
traceValue = 0.5f / traceValue;
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
*/
}
// No idea what this function is doing and it will be hard to tell until
// we have a confirmed usage site.
// STUB: LEGO1 0x10002710
inline int Matrix4::FromQuaternion(const Vector4& p_vec)
{
return -1;
}
#endif // MATRIX_H