2023-11-19 09:38:07 -05:00
|
|
|
#ifndef MATRIX_H
|
|
|
|
#define MATRIX_H
|
|
|
|
|
|
|
|
#include "vector.h"
|
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
#include <memory.h>
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
struct UnknownMatrixType {
|
|
|
|
float m_data[4][4];
|
2023-11-19 09:38:07 -05:00
|
|
|
};
|
|
|
|
|
2023-12-06 07:10:45 -05:00
|
|
|
// VTABLE: LEGO1 0x100d4350
|
2024-01-29 16:17:17 -05:00
|
|
|
// SIZE 0x08
|
2024-01-12 19:34:38 -05:00
|
|
|
class Matrix4 {
|
2023-11-19 09:38:07 -05:00
|
|
|
public:
|
2024-01-12 19:34:38 -05:00
|
|
|
inline Matrix4(float (*p_data)[4]) { SetData(p_data); }
|
|
|
|
|
|
|
|
// Note: virtual function overloads appear in the virtual table
|
|
|
|
// in reverse order of appearance.
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002320
|
|
|
|
virtual void Equals(float (*p_data)[4]) { memcpy(m_data, p_data, sizeof(float) * 4 * 4); } // vtable+0x04
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002340
|
|
|
|
virtual void Equals(const Matrix4& p_matrix)
|
|
|
|
{
|
|
|
|
memcpy(m_data, p_matrix.m_data, sizeof(float) * 4 * 4);
|
|
|
|
}; // vtable+0x00
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002360
|
|
|
|
virtual void SetData(float (*p_data)[4]) { m_data = p_data; } // vtable+0x0c
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-09 10:30:37 -05:00
|
|
|
// FUNCTION: LEGO1 0x10002370
|
2024-01-12 19:34:38 -05:00
|
|
|
virtual void SetData(UnknownMatrixType& p_matrix) { m_data = p_matrix.m_data; }; // vtable+0x08
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002380
|
|
|
|
virtual float (*GetData())[4] { return m_data; }; // vtable+0x14
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002390
|
|
|
|
virtual float (*GetData() const)[4] { return m_data; }; // vtable+0x10
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x100023a0
|
|
|
|
virtual float* Element(int p_row, int p_col) { return &m_data[p_row][p_col]; } // vtable+0x1c
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x100023c0
|
|
|
|
virtual const float* Element(int p_row, int p_col) const { return &m_data[p_row][p_col]; }; // vtable+0x18
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x100023e0
|
|
|
|
virtual void Clear() { memset(m_data, 0, 16 * sizeof(float)); }; // vtable+0x20
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// FUNCTION: LEGO1 0x100023f0
|
|
|
|
virtual void SetIdentity()
|
|
|
|
{
|
|
|
|
Clear();
|
|
|
|
m_data[0][0] = 1.0f;
|
|
|
|
m_data[1][1] = 1.0f;
|
|
|
|
m_data[2][2] = 1.0f;
|
|
|
|
m_data[3][3] = 1.0f;
|
|
|
|
} // vtable+0x24
|
|
|
|
|
2024-01-18 08:34:14 -05:00
|
|
|
// FUNCTION: LEGO1 0x10002420
|
2024-01-12 19:34:38 -05:00
|
|
|
virtual void operator=(const Matrix4& p_matrix) { Equals(p_matrix); } // vtable+0x28
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002430
|
|
|
|
virtual Matrix4& operator+=(float (*p_data)[4])
|
|
|
|
{
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
|
|
((float*) m_data)[i] += ((float*) p_data)[i];
|
|
|
|
return *this;
|
|
|
|
} // vtable+0x2c
|
|
|
|
|
|
|
|
// FUNCTION: LEGO1 0x10002460
|
|
|
|
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z)
|
|
|
|
{
|
|
|
|
m_data[3][0] += *p_x;
|
|
|
|
m_data[3][1] += *p_y;
|
|
|
|
m_data[3][2] += *p_z;
|
|
|
|
} // vtable+0x30
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// FUNCTION: LEGO1 0x100024a0
|
|
|
|
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z)
|
|
|
|
{
|
|
|
|
m_data[3][0] = *p_x;
|
|
|
|
m_data[3][1] = *p_y;
|
|
|
|
m_data[3][2] = *p_z;
|
|
|
|
} // vtable+0x34
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// FUNCTION: LEGO1 0x100024d0
|
|
|
|
virtual void Product(float (*p_a)[4], float (*p_b)[4])
|
|
|
|
{
|
|
|
|
float* cur = (float*) m_data;
|
|
|
|
for (int row = 0; row < 4; row++) {
|
|
|
|
for (int col = 0; col < 4; col++) {
|
|
|
|
*cur = 0.0f;
|
|
|
|
for (int k = 0; k < 4; k++) {
|
|
|
|
*cur += p_a[row][k] * p_b[k][col];
|
|
|
|
}
|
|
|
|
cur++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}; // vtable+0x3c
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// FUNCTION: LEGO1 0x10002530
|
|
|
|
virtual void Product(const Matrix4& p_a, const Matrix4& p_b) { Product(p_a.m_data, p_b.m_data); } // vtable+0x38
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
inline virtual void ToQuaternion(Vector4& p_resultQuat); // vtable+0x40
|
|
|
|
inline virtual int FromQuaternion(const Vector4& p_vec); // vtable+0x44
|
|
|
|
|
|
|
|
float* operator[](size_t idx) { return m_data[idx]; }
|
|
|
|
const float* operator[](size_t idx) const { return m_data[idx]; }
|
2023-11-19 09:38:07 -05:00
|
|
|
|
|
|
|
protected:
|
2024-01-12 19:34:38 -05:00
|
|
|
float (*m_data)[4];
|
2023-11-19 09:38:07 -05:00
|
|
|
};
|
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// Not close, Ghidra struggles understinging this method so it will have to
|
|
|
|
// be manually worked out. Included since I at least figured out what it was
|
|
|
|
// doing with rotateIndex and what overall operation it's trying to do.
|
|
|
|
// STUB: LEGO1 0x10002550
|
|
|
|
inline void Matrix4::ToQuaternion(Vector4& p_outQuat)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
float trace = m_data[0] + m_data[5] + m_data[10];
|
|
|
|
if (trace > 0) {
|
|
|
|
trace = sqrt(trace + 1.0);
|
|
|
|
p_outQuat->GetData()[3] = trace * 0.5f;
|
|
|
|
p_outQuat->GetData()[0] = (m_data[9] - m_data[6]) * trace;
|
|
|
|
p_outQuat->GetData()[1] = (m_data[2] - m_data[8]) * trace;
|
|
|
|
p_outQuat->GetData()[2] = (m_data[4] - m_data[1]) * trace;
|
|
|
|
return;
|
|
|
|
}
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// ~GLOBAL: LEGO1 0x100d4090
|
|
|
|
static int rotateIndex[] = {1, 2, 0};
|
2023-11-19 09:38:07 -05:00
|
|
|
|
2024-01-12 19:34:38 -05:00
|
|
|
// Largest element along the trace
|
|
|
|
int largest = m_data[0] < m_data[5];
|
|
|
|
if (*Element(largest, largest) < m_data[10])
|
|
|
|
largest = 2;
|
|
|
|
|
|
|
|
int next = rotateIndex[largest];
|
|
|
|
int nextNext = rotateIndex[next];
|
|
|
|
float valueA = *Element(nextNext, nextNext);
|
|
|
|
float valueB = *Element(next, next);
|
|
|
|
float valueC = *Element(largest, largest);
|
|
|
|
|
|
|
|
// Above is somewhat decomped, below is pure speculation since the automatic
|
|
|
|
// decomp becomes very garbled.
|
|
|
|
float traceValue = sqrt(valueA - valueB - valueC + 1.0);
|
|
|
|
|
|
|
|
p_outQuat->GetData()[largest] = traceValue * 0.5f;
|
|
|
|
traceValue = 0.5f / traceValue;
|
|
|
|
|
|
|
|
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
|
|
|
|
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
|
|
|
|
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
// No idea what this function is doing and it will be hard to tell until
|
|
|
|
// we have a confirmed usage site.
|
|
|
|
// STUB: LEGO1 0x10002710
|
|
|
|
inline int Matrix4::FromQuaternion(const Vector4& p_vec)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
2023-11-19 09:38:07 -05:00
|
|
|
|
|
|
|
#endif // MATRIX_H
|