/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2016, Juerg Lehni & Jonathan Puckey * http://scratchdisk.com/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name CurveLocation * * @class CurveLocation objects describe a location on {@link Curve} objects, as * defined by the curve-time {@link #parameter}, a value between `0` * (beginning of the curve) and `1` (end of the curve). If the curve is part * of a {@link Path} item, its {@link #index} inside the {@link Path#curves} * array is also provided. * * The class is in use in many places, such as * {@link Path#getLocationAt(offset)}, * {@link Path#getLocationOf(point)}, * {@link Path#getNearestLocation(point)}, * {@link PathItem#getIntersections(path)}, * etc. */ var CurveLocation = Base.extend(/** @lends CurveLocation# */{ _class: 'CurveLocation', // Enforce creation of beans, as bean getters have hidden parameters. // See #getSegment() below. beans: true, // DOCS: CurveLocation class description: add these back when the mentioned // functioned have been added: {@link Path#split(location)} /** * Creates a new CurveLocation object. * * @param {Curve} curve * @param {Number} parameter * @param {Point} [point] */ initialize: function CurveLocation(curve, parameter, point, _overlap, _distance) { // Merge intersections very close to the end of a curve with the // beginning of the next curve. if (parameter > /*#=*/(1 - Numerical.CURVETIME_EPSILON)) { var next = curve.getNext(); if (next) { parameter = 0; curve = next; } } // Define this CurveLocation's unique id. // NOTE: We do not use the same pool as the rest of the library here, // since this is only required to be unique at runtime among other // CurveLocation objects. this._id = UID.get(CurveLocation); this._setCurve(curve); this._parameter = parameter; this._point = point || curve.getPointAt(parameter, true); this._overlap = _overlap; this._distance = _distance; this._intersection = this._next = this._prev = null; }, _setCurve: function(curve) { var path = curve._path; this._version = path ? path._version : 0; this._curve = curve; this._segment = null; // To be determined, see #getSegment() // Also store references to segment1 and segment2, in case path // splitting / dividing is going to happen, in which case the segments // can be used to determine the new curves, see #getCurve(true) this._segment1 = curve._segment1; this._segment2 = curve._segment2; }, _setSegment: function(segment) { this._setCurve(segment.getCurve()); this._segment = segment; this._parameter = segment === this._segment1 ? 0 : 1; // To avoid issues with imprecision in getCurve() / trySegment() this._point = segment._point.clone(); }, /** * The segment of the curve which is closer to the described location. * * @type Segment * @bean */ getSegment: function() { // Request curve first, so _segment gets invalidated if it's out of sync var curve = this.getCurve(), segment = this._segment; if (!segment) { var parameter = this.getParameter(); if (parameter === 0) { segment = curve._segment1; } else if (parameter === 1) { segment = curve._segment2; } else if (parameter != null) { // Determine the closest segment by comparing curve lengths segment = curve.getPartLength(0, parameter) < curve.getPartLength(parameter, 1) ? curve._segment1 : curve._segment2; } this._segment = segment; } return segment; }, /** * The curve that this location belongs to. * * @type Curve * @bean */ getCurve: function() { var curve = this._curve, path = curve && curve._path, that = this; if (path && path._version !== this._version) { // If the path's segments have changed in the meantime, clear the // internal _parameter value and force refetching of the correct // curve again here. curve = this._parameter = this._curve = this._offset = null; } // If path is out of sync, access current curve objects through segment1 // / segment2. Since path splitting or dividing might have happened in // the meantime, try segment1's curve, and see if _point lies on it // still, otherwise assume it's the curve before segment2. function trySegment(segment) { var curve = segment && segment.getCurve(); if (curve && (that._parameter = curve.getParameterOf(that._point)) != null) { // Fetch path again as it could be on a new one through split() that._setCurve(curve); that._segment = segment; return curve; } } return curve || trySegment(this._segment) || trySegment(this._segment1) || trySegment(this._segment2.getPrevious()); }, /** * The path this curve belongs to, if any. * * @type Item * @bean */ getPath: function() { var curve = this.getCurve(); return curve && curve._path; }, /** * The index of the {@link #curve} within the {@link Path#curves} list, if * it is part of a {@link Path} item. * * @type Index * @bean */ getIndex: function() { var curve = this.getCurve(); return curve && curve.getIndex(); }, /** * The curve-time parameter, as used by various bezier curve calculations. * It is value between `0` (beginning of the curve) and `1` (end of the * curve). * * @type Number * @bean */ getParameter: function() { var curve = this.getCurve(), parameter = this._parameter; return curve && parameter == null ? this._parameter = curve.getParameterOf(this._point) : parameter; }, /** * The point which is defined by the {@link #curve} and * {@link #parameter}. * * @type Point * @bean */ getPoint: function() { return this._point; }, /** * The length of the path from its beginning up to the location described * by this object. If the curve is not part of a path, then the length * within the curve is returned instead. * * @type Number * @bean */ getOffset: function() { var offset = this._offset; if (offset == null) { offset = 0; var path = this.getPath(), index = this.getIndex(); if (path && index != null) { var curves = path.getCurves(); for (var i = 0; i < index; i++) offset += curves[i].getLength(); } this._offset = offset += this.getCurveOffset(); } return offset; }, /** * The length of the curve from its beginning up to the location described * by this object. * * @type Number * @bean */ getCurveOffset: function() { var curve = this.getCurve(), parameter = this.getParameter(); return parameter != null && curve && curve.getPartLength(0, parameter); }, /** * The curve location on the intersecting curve, if this location is the * result of a call to {@link PathItem#getIntersections(path)} / * {@link Curve#getIntersections(curve)}. * * @type CurveLocation * @bean */ getIntersection: function() { return this._intersection; }, /** * The tangential vector to the {@link #curve} at the given location. * * @name CurveLocation#getTangent * @type Point * @bean */ /** * The normal vector to the {@link #curve} at the given location. * * @name CurveLocation#getNormal * @type Point * @bean */ /** * The curvature of the {@link #curve} at the given location. * * @name CurveLocation#getCurvature * @type Number * @bean */ /** * The distance from the queried point to the returned location. * * @type Number * @bean * @see Curve#getNearestLocation(point) * @see Path#getNearestLocation(point) */ getDistance: function() { return this._distance; }, // DOCS: divide(), split() divide: function() { var curve = this.getCurve(), res = null; if (curve) { res = curve.divide(this.getParameter(), true); // Change to the newly inserted segment, also adjusting _parameter. if (res) this._setSegment(res._segment1); } return res; }, split: function() { var curve = this.getCurve(); return curve ? curve.split(this.getParameter(), true) : null; }, /** * Checks whether tow CurveLocation objects are describing the same location * on a path, by applying the same tolerances as elsewhere when dealing with * curve time parameters. * * @param {CurveLocation} location * @return {Boolean} {@true if the locations are equal} */ equals: function(loc, _ignoreOther) { var res = this === loc, epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON; // NOTE: We need to compare both by (index + parameter) and by proximity // of points. See: // https://github.com/paperjs/paper.js/issues/784#issuecomment-143161586 if (!res && loc instanceof CurveLocation && this.getPath() === loc.getPath() && this.getPoint().isClose(loc.getPoint(), epsilon)) { // The position is the same, but it could still be in a different // location on the path. Perform more thorough checks now: var c1 = this.getCurve(), c2 = loc.getCurve(), abs = Math.abs, // We need to wrap diff around the path's beginning / end: diff = abs( ((c1.isLast() && c2.isFirst() ? -1 : c1.getIndex()) + this.getParameter()) - ((c2.isLast() && c1.isFirst() ? -1 : c2.getIndex()) + loc.getParameter())); res = (diff < /*#=*/Numerical.CURVETIME_EPSILON // If diff isn't close enough, compare the actual offsets of // both locations to determine if they're in the same spot, // taking into account the wrapping around path ends too. // This is necessary in order to handle very short consecutive // curves (length ~< 1e-7), which would lead to diff > 1. || ((diff = abs(this.getOffset() - loc.getOffset())) < epsilon || abs(this.getPath().getLength() - diff) < epsilon)) && (_ignoreOther || (!this._intersection && !loc._intersection || this._intersection && this._intersection.equals( loc._intersection, true))); } return res; }, /** * @return {String} a string representation of the curve location */ toString: function() { var parts = [], point = this.getPoint(), f = Formatter.instance; if (point) parts.push('point: ' + point); var index = this.getIndex(); if (index != null) parts.push('index: ' + index); var parameter = this.getParameter(); if (parameter != null) parts.push('parameter: ' + f.number(parameter)); if (this._distance != null) parts.push('distance: ' + f.number(this._distance)); return '{ ' + parts.join(', ') + ' }'; }, /** * {@grouptitle Tests} * Checks if the location is an intersection with another curve and is * merely touching the other curve, as opposed to crossing it. * * @return {Boolean} {@true if the location is an intersection that is * merely touching another curve} * @see #isCrossing() */ isTouching: function() { var inter = this._intersection; if (inter && this.getTangent().isCollinear(inter.getTangent())) { // Only consider two straight curves as touching if their lines // don't intersect. var curve1 = this.getCurve(), curve2 = inter.getCurve(); return !(curve1.isStraight() && curve2.isStraight() && curve1.getLine().intersect(curve2.getLine())); } return false; }, /** * Checks if the location is an intersection with another curve and is * crossing the other curve, as opposed to just touching it. * * @return {Boolean} {@true if the location is an intersection that is * crossing another curve} * @see #isTouching() */ isCrossing: function() { // Implementation loosely based on work by Andy Finnell: // http://losingfight.com/blog/2011/07/09/how-to-implement-boolean-operations-on-bezier-paths-part-3/ // https://bitbucket.org/andyfinnell/vectorboolean var inter = this._intersection; if (!inter) return false; var t1 = this.getParameter(), t2 = inter.getParameter(), tMin = /*#=*/Numerical.CURVETIME_EPSILON, tMax = 1 - tMin, // t*Inside specifies if the found intersection is inside the curve. t1Inside = t1 > tMin && t1 < tMax, t2Inside = t2 > tMin && t2 < tMax; // If the intersection is in the middle of both paths, it is either a // tangent or a crossing, no need for the detailed corner check below: if (t1Inside && t2Inside) return !this.isTouching(); // Now get the references to the 4 curves involved in the intersection: // - c1 & c2 are the curves on the first intersecting path, left and // right of the intersection. // - c3 & c4 are the same for the second intersecting path. // - If the intersection is in the middle of the curve (t*Inside), then // both values point to the same curve, and the curve-time is to be // handled accordingly further down. var c2 = this.getCurve(), c1 = t1 <= tMin ? c2.getPrevious() : c2, c4 = inter.getCurve(), c3 = t2 <= tMin ? c4.getPrevious() : c4; // If t1 / t2 are at the end, then step to the next curve. if (t1 >= tMax) c2 = c2.getNext(); if (t2 >= tMax) c4 = c4.getNext(); if (!c1 || !c2 || !c3 || !c4) return false; // Before performing any detailed angle range checks, we need to handle // a rare edge case where the intersection occurs in the middle of a // straight curve with another straight curve that run almost parallel, // in which case we want the outcome to be the same as if // Line.intersect() was used (see addLineIntersection() in Curve). if (t1Inside || t2Inside) { // Pick the with the intersection inside: var c = t1Inside ? c2 : c4; if (c.isStraight()) { // Now pick the other two potential intersecting curves, // and check against each if they are straight: var l = c.getLine(), l1 = t1Inside ? c3 : c1, l2 = t1Inside ? c4 : c2, straight1 = l1.isStraight(), straight2 = l2.isStraight(); if (straight1 || straight2) { return straight1 && l.intersect(l1.getLine()) || straight2 && l.intersect(l2.getLine()); } } } function isInRange(angle, min, max) { return min < max ? angle > min && angle < max // The range wraps around -180 / 180 degrees: : angle > min && angle <= 180 || angle >= -180 && angle < max; } // Calculate angles for all four tangents at the intersection point, // using values for getTangentAt() that are almost 0 and 1. // NOTE: Even though getTangentAt() has code to support 0 and 1 instead // of tMin and tMax, we still need to use tMin / tMaxx instead, as other // issues emerge from switching to 0 and 1 in edge cases. // NOTE: VectorBoolean has code that slowly shifts these points inwards // until the resulting tangents are not ambiguous. Do we need this too? // NOTE: We handle t*Inside here simply by picking t1 / t2 instead of // tMin / tMax. E.g. if t1Inside is true, c1 will be the same as c2, // and the code will doe the right thing. // The incomings tangents v1 & v3 are inverted, so that all angles // are pointing outwards in the right direction from the intersection. var v2 = c2.getTangentAt(t1Inside ? t1 : tMin, true), v1 = (t1Inside ? v2 : c1.getTangentAt(tMax, true)).negate(), v4 = c4.getTangentAt(t2Inside ? t2 : tMin, true), v3 = (t2Inside ? v4 : c3.getTangentAt(tMax, true)).negate(), // NOTE: For shorter API calls we work with angles in degrees here: a1 = v1.getAngle(), a2 = v2.getAngle(), a3 = v3.getAngle(), a4 = v4.getAngle(); // Count how many times curve2 angles appear between the curve1 angles // If each pair of angles split the other two, then the edges cross. // Use t*Inside to decide which angle pair to check against. // If t1 is inside the curve, check against a3 & a4, othrwise a1 & a2. return !!(t1Inside ? (isInRange(a1, a3, a4) ^ isInRange(a2, a3, a4)) && (isInRange(a1, a4, a3) ^ isInRange(a2, a4, a3)) : (isInRange(a3, a1, a2) ^ isInRange(a4, a1, a2)) && (isInRange(a3, a2, a1) ^ isInRange(a4, a2, a1))); }, /** * Checks if the location is an intersection with another curve and is * part of an overlap between the two involved paths. * * @return {Boolean} {@true if the location is an intersection that is * part of an overlap between the two involved paths} * @see #isCrossing() * @see #isTouching() */ isOverlap: function() { return !!this._overlap; } }, Base.each(Curve.evaluateMethods, function(name) { // Produce getters for #getTangent() / #getNormal() / #getCurvature() var get = name + 'At'; this[name] = function() { var parameter = this.getParameter(), curve = this.getCurve(); return parameter != null && curve && curve[get](parameter, true); }; }, { // Do not override the existing #getPoint(): preserve: true }), new function() { // Scope for statics function insert(locations, loc, merge) { // Insert-sort by path-id, curve, parameter so we can easily merge // duplicates with calls to equals() after. var length = locations.length, l = 0, r = length - 1; function search(index, dir) { // If we reach the beginning/end of the list, also compare with the // location at the other end, as paths are circular lists. // NOTE: When merging, the locations array will only contain // locations on the same path, so it is fine that check for the end // to address circularity. See PathItem#getIntersections() for (var i = index + dir; i >= -1 && i <= length; i += dir) { // Wrap the index around, to match the other ends: var loc2 = locations[((i % length) + length) % length]; // Once we're outside the spot, we can stop searching. if (!loc.getPoint().isClose(loc2.getPoint(), /*#=*/Numerical.GEOMETRIC_EPSILON)) break; if (loc.equals(loc2)) return loc2; } return null; } while (l <= r) { var m = (l + r) >>> 1, loc2 = locations[m], found; // See if the two locations are actually the same, and merge if // they are. If they aren't check the other neighbors with search() if (merge && (found = loc.equals(loc2) ? loc2 : (search(m, -1) || search(m, 1)))) { // We're done, don't insert, merge with the found location // instead, and carry over overlap: if (loc._overlap) { found._overlap = found._intersection._overlap = true; } return found; } var path1 = loc.getPath(), path2 = loc2.getPath(), // NOTE: equals() takes the intersection location into account, // while this calculation of diff doesn't! diff = path1 === path2 //Sort by both index and parameter. The two values added // together provides a convenient sorting index. ? (loc.getIndex() + loc.getParameter()) - (loc2.getIndex() + loc2.getParameter()) // Sort by path id to group all locs on same path. : path1._id - path2._id; if (diff < 0) { r = m - 1; } else { l = m + 1; } } // We didn't merge with a preexisting location, insert it now. locations.splice(l, 0, loc); return loc; } return { statics: { insert: insert, expand: function(locations) { // Create a copy since insert() keeps modifying the array and // inserting at sorted indices. var expanded = locations.slice(); for (var i = 0, l = locations.length; i < l; i++) { insert(expanded, locations[i]._intersection, false); } return expanded; } }}; });