/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey * http://scratchdisk.com/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name Path * * @class The path item represents a path in a Paper.js project. * * @extends PathItem */ // DOCS: Explain that path matrix is always applied with each transformation. var Path = PathItem.extend(/** @lends Path# */{ _class: 'Path', _serializeFields: { segments: [], closed: false }, /** * Creates a new path item and places it at the top of the active layer. * * @name Path#initialize * @param {Segment[]} [segments] An array of segments (or points to be * converted to segments) that will be added to the path * @return {Path} the newly created path * * @example * // Create an empty path and add segments to it: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(30, 30)); * path.add(new Point(100, 100)); * * @example * // Create a path with two segments: * var segments = [new Point(30, 30), new Point(100, 100)]; * var path = new Path(segments); * path.strokeColor = 'black'; */ /** * Creates a new path item from an object description and places it at the * top of the active layer. * * @name Path#initialize * @param {Object} object an object literal containing properties to * be set on the path * @return {Path} the newly created path * * @example {@paperscript} * var path = new Path({ * segments: [[20, 20], [80, 80], [140, 20]], * fillColor: 'black', * closed: true * }); * * @example {@paperscript} * var path = new Path({ * segments: [[20, 20], [80, 80], [140, 20]], * strokeColor: 'red', * strokeWidth: 20, * strokeCap: 'round', * selected: true * }); */ /** * Creates a new path item from SVG path-data and places it at the top of * the active layer. * * @name Path#initialize * @param {String} pathData the SVG path-data that describes the geometry * of this path. * @return {Path} the newly created path * * @example {@paperscript} * var pathData = 'M100,50c0,27.614-22.386,50-50,50S0,77.614,0,50S22.386,0,50,0S100,22.386,100,50'; * var path = new Path(pathData); * path.fillColor = 'red'; */ initialize: function Path(arg) { this._closed = false; this._segments = []; // arg can either be an object literal containing properties to be set // on the path, a list of segments to be set, or the first of multiple // arguments describing separate segments. // If it is an array, it can also be a description of a point, so // check its first entry for object as well. // But first see if segments are directly passed at all. If not, try // _set(arg). var segments = Array.isArray(arg) ? typeof arg[0] === 'object' ? arg : arguments // See if it behaves like a segment or a point, but filter out // rectangles, as accepted by some Path.Constructor constructors. : arg && (arg.size === undefined && (arg.x !== undefined || arg.point !== undefined)) ? arguments : null; // Always call setSegments() to initialize a few related variables. this.setSegments(segments || []); if (!segments && typeof arg === 'string') { this.setPathData(arg); // Erase for _initialize() call below. arg = null; } // Only pass on arg as props if it wasn't consumed for segments already. this._initialize(!segments && arg); }, _equals: function(item) { return Base.equals(this._segments, item._segments); }, clone: function(insert) { var copy = this._clone(new Path({ segments: this._segments, insert: false }), insert); // Speed up things a little by copy over values that don't need checking copy._closed = this._closed; if (this._clockwise !== undefined) copy._clockwise = this._clockwise; return copy; }, _changed: function _changed(flags) { _changed.base.call(this, flags); if (flags & /*#=*/ ChangeFlag.GEOMETRY) { // Clear cached native Path (this._compound ? this._parent : this)._currentPath = undefined; // Clockwise state becomes undefined as soon as geometry changes. this._length = this._clockwise = undefined; // Curves are no longer valid if (this._curves) { for (var i = 0, l = this._curves.length; i < l; i++) this._curves[i]._changed(/*#=*/ Change.GEOMETRY); } // Clear cached curves used for winding direction and containment // calculation. this._monotoneCurves = undefined; } else if (flags & /*#=*/ ChangeFlag.STROKE) { // TODO: We could preserve the purely geometric bounds that are not // affected by stroke: _bounds.bounds and _bounds.handleBounds this._bounds = undefined; } }, getStyle: function() { // If this path is part of a CompoundPath, use the paren't style instead var parent = this._parent; return (parent instanceof CompoundPath ? parent : this)._style; }, /** * The segments contained within the path. * * @type Segment[] * @bean */ getSegments: function() { return this._segments; }, setSegments: function(segments) { var fullySelected = this.isFullySelected(); this._segments.length = 0; this._selectedSegmentState = 0; // Calculate new curves next time we call getCurves() this._curves = undefined; this._add(Segment.readAll(segments)); if (fullySelected) this.setFullySelected(true); }, /** * The first Segment contained within the path. * * @type Segment * @bean */ getFirstSegment: function() { return this._segments[0]; }, /** * The last Segment contained within the path. * * @type Segment * @bean */ getLastSegment: function() { return this._segments[this._segments.length - 1]; }, /** * The curves contained within the path. * * @type Curve[] * @bean */ getCurves: function() { var curves = this._curves, segments = this._segments; if (!curves) { var length = this._countCurves(); curves = this._curves = new Array(length); for (var i = 0; i < length; i++) curves[i] = new Curve(this, segments[i], // Use first segment for segment2 of closing curve segments[i + 1] || segments[0]); } return curves; }, /** * The first Curve contained within the path. * * @type Curve * @bean */ getFirstCurve: function() { return this.getCurves()[0]; }, /** * The last Curve contained within the path. * * @type Curve * @bean */ getLastCurve: function() { var curves = this.getCurves(); return curves[curves.length - 1]; }, /** * The segments contained within the path, described as SVG style path data. * * @type String * @bean */ getPathData: function(precision) { var segments = this._segments, f = Formatter.instance, parts = []; // TODO: Add support for H/V and/or relative commands, where appropriate // and resulting in shorter strings function addCurve(seg1, seg2, skipLine) { var point1 = seg1._point, point2 = seg2._point, handle1 = seg1._handleOut, handle2 = seg2._handleIn; if (handle1.isZero() && handle2.isZero()) { if (!skipLine) { // L = absolute lineto: moving to a point with drawing parts.push('L' + f.point(point2, precision)); } } else { // c = relative curveto: handle1, handle2 + end - start, // end - start var end = point2.subtract(point1); parts.push('c' + f.point(handle1, precision) + ' ' + f.point(end.add(handle2), precision) + ' ' + f.point(end, precision)); } } if (segments.length === 0) return ''; parts.push('M' + f.point(segments[0]._point)); for (var i = 0, l = segments.length - 1; i < l; i++) addCurve(segments[i], segments[i + 1], false); if (this._closed) { addCurve(segments[segments.length - 1], segments[0], true); parts.push('z'); } return parts.join(''); }, /** * Specifies whether the path is closed. If it is closed, Paper.js connects * the first and last segments. * * @type Boolean * @bean * * @example {@paperscript} * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(100, 25)); * myPath.add(new Point(150, 75)); * * // Close the path: * myPath.closed = true; */ isClosed: function() { return this._closed; }, setClosed: function(closed) { // On-the-fly conversion to boolean: if (this._closed != (closed = !!closed)) { this._closed = closed; // Update _curves length if (this._curves) { var length = this._curves.length = this._countCurves(); // If we were closing this path, we need to add a new curve now if (closed) this._curves[length - 1] = new Curve(this, this._segments[length - 1], this._segments[0]); } this._changed(/*#=*/ Change.GEOMETRY); } }, // TODO: Consider adding getSubPath(a, b), returning a part of the current // path, with the added benefit that b can be < a, and closed looping is // taken into account. isEmpty: function() { return this._segments.length === 0; }, isPolygon: function() { for (var i = 0, l = this._segments.length; i < l; i++) { if (!this._segments[i].isLinear()) return false; } return true; }, _applyMatrix: function(matrix) { var coords = new Array(6); for (var i = 0, l = this._segments.length; i < l; i++) this._segments[i]._transformCoordinates(matrix, coords, true); return true; }, /** * Private method that adds a segment to the segment list. It assumes that * the passed object is a segment already and does not perform any checks. * If a curves list was requested, it will kept in sync with the segments * list automatically. */ _add: function(segs, index) { // Local short-cuts: var segments = this._segments, curves = this._curves, amount = segs.length, append = index == null, index = append ? segments.length : index; // Scan through segments to add first, convert if necessary and set // _path and _index references on them. for (var i = 0; i < amount; i++) { var segment = segs[i]; // If the segments belong to another path already, clone them before // adding: if (segment._path) segment = segs[i] = segment.clone(); segment._path = this; segment._index = index + i; // If parts of this segment are selected, adjust the internal // _selectedSegmentState now if (segment._selectionState) this._updateSelection(segment, 0, segment._selectionState); } if (append) { // Append them all at the end by using push segments.push.apply(segments, segs); } else { // Insert somewhere else segments.splice.apply(segments, [index, 0].concat(segs)); // Adjust the indices of the segments above. for (var i = index + amount, l = segments.length; i < l; i++) segments[i]._index = i; } // Keep the curves list in sync all the time in case it as requested // already. if (curves || segs._curves) { if (!curves) curves = this._curves = []; // We need to step one index down from the inserted segment to // get its curve, except for the first segment. var from = index > 0 ? index - 1 : index, start = from, to = Math.min(from + amount, this._countCurves()); if (segs._curves) { // Reuse removed curves. curves.splice.apply(curves, [from, 0].concat(segs._curves)); start += segs._curves.length; } // Insert new curves, but do not initialize their segments yet, // since #_adjustCurves() handles all that for us. for (var i = start; i < to; i++) curves.splice(i, 0, new Curve(this, null, null)); // Adjust segments for the curves before and after the removed ones this._adjustCurves(from, to); } this._changed(/*#=*/ Change.GEOMETRY); return segs; }, /** * Adjusts segments of curves before and after inserted / removed segments. */ _adjustCurves: function(from, to) { var segments = this._segments, curves = this._curves, curve; for (var i = from; i < to; i++) { curve = curves[i]; curve._path = this; curve._segment1 = segments[i]; curve._segment2 = segments[i + 1] || segments[0]; } // If it's the first segment, correct the last segment of closed // paths too: if (curve = curves[this._closed && from === 0 ? segments.length - 1 : from - 1]) curve._segment2 = segments[from] || segments[0]; // Fix the segment after the modified range, if it exists if (curve = curves[to]) curve._segment1 = segments[to]; }, /** * Returns the amount of curves this path item is supposed to have, based * on its amount of #segments and #closed state. */ _countCurves: function() { var length = this._segments.length; // Reduce length by one if it's an open path: return !this._closed && length > 0 ? length - 1 : length; }, // DOCS: find a way to document the variable segment parameters of Path#add /** * Adds one or more segments to the end of the {@link #segments} array of * this path. * * @param {Segment|Point} segment the segment or point to be added. * @return {Segment} the added segment. This is not necessarily the same * object, e.g. if the segment to be added already belongs to another path. * * @example {@paperscript} * // Adding segments to a path using point objects: * var path = new Path({ * strokeColor: 'black' * }); * * // Add a segment at {x: 30, y: 75} * path.add(new Point(30, 75)); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add(new Point(100, 20), new Point(170, 75)); * * @example {@paperscript} * // Adding segments to a path using arrays containing number pairs: * var path = new Path({ * strokeColor: 'black' * }); * * // Add a segment at {x: 30, y: 75} * path.add([30, 75]); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add([100, 20], [170, 75]); * * @example {@paperscript} * // Adding segments to a path using objects: * var path = new Path({ * strokeColor: 'black' * }); * * // Add a segment at {x: 30, y: 75} * path.add({x: 30, y: 75}); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add({x: 100, y: 20}, {x: 170, y: 75}); * * @example {@paperscript} * // Adding a segment with handles to a path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(30, 75)); * * // Add a segment with handles: * var point = new Point(100, 20); * var handleIn = new Point(-50, 0); * var handleOut = new Point(50, 0); * var added = path.add(new Segment(point, handleIn, handleOut)); * * // Select the added segment, so we can see its handles: * added.selected = true; * * path.add(new Point(170, 75)); */ add: function(segment1 /*, segment2, ... */) { return arguments.length > 1 && typeof segment1 !== 'number' // addSegments ? this._add(Segment.readAll(arguments)) // addSegment : this._add([ Segment.read(arguments) ])[0]; }, /** * Inserts one or more segments at a given index in the list of this path's * segments. * * @param {Number} index the index at which to insert the segment. * @param {Segment|Point} segment the segment or point to be inserted. * @return {Segment} the added segment. This is not necessarily the same * object, e.g. if the segment to be added already belongs to another path. * * @example {@paperscript} * // Inserting a segment: * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(150, 75)); * * // Insert a new segment into myPath at index 1: * myPath.insert(1, new Point(100, 25)); * * // Select the segment which we just inserted: * myPath.segments[1].selected = true; * * @example {@paperscript} * // Inserting multiple segments: * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(150, 75)); * * // Insert two segments into myPath at index 1: * myPath.insert(1, [80, 25], [120, 25]); * * // Select the segments which we just inserted: * myPath.segments[1].selected = true; * myPath.segments[2].selected = true; */ insert: function(index, segment1 /*, segment2, ... */) { return arguments.length > 2 && typeof segment1 !== 'number' // insertSegments ? this._add(Segment.readAll(arguments, 1), index) // insertSegment : this._add([ Segment.read(arguments, 1) ], index)[0]; }, addSegment: function(/* segment */) { return this._add([ Segment.read(arguments) ])[0]; }, insertSegment: function(index /*, segment */) { return this._add([ Segment.read(arguments, 1) ], index)[0]; }, /** * Adds an array of segments (or types that can be converted to segments) * to the end of the {@link #segments} array. * * @param {Segment[]} segments * @return {Segment[]} an array of the added segments. These segments are * not necessarily the same objects, e.g. if the segment to be added already * belongs to another path. * * @example {@paperscript} * // Adding an array of Point objects: * var path = new Path({ * strokeColor: 'black' * }); * var points = [new Point(30, 50), new Point(170, 50)]; * path.addSegments(points); * * @example {@paperscript} * // Adding an array of [x, y] arrays: * var path = new Path({ * strokeColor: 'black' * }); * var array = [[30, 75], [100, 20], [170, 75]]; * path.addSegments(array); * * @example {@paperscript} * // Adding segments from one path to another: * * var path = new Path({ * strokeColor: 'black' * }); * path.addSegments([[30, 75], [100, 20], [170, 75]]); * * var path2 = new Path(); * path2.strokeColor = 'red'; * * // Add the second and third segments of path to path2: * path2.add(path.segments[1], path.segments[2]); * * // Move path2 30pt to the right: * path2.position.x += 30; */ addSegments: function(segments) { return this._add(Segment.readAll(segments)); }, /** * Inserts an array of segments at a given index in the path's * {@link #segments} array. * * @param {Number} index the index at which to insert the segments. * @param {Segment[]} segments the segments to be inserted. * @return {Segment[]} an array of the added segments. These segments are * not necessarily the same objects, e.g. if the segment to be added already * belongs to another path. */ insertSegments: function(index, segments) { return this._add(Segment.readAll(segments), index); }, /** * Removes the segment at the specified index of the path's * {@link #segments} array. * * @param {Number} index the index of the segment to be removed * @return {Segment} the removed segment * * @example {@paperscript} * // Removing a segment from a path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle({ * center: new Point(80, 50), * radius: 35, * strokeColor: 'black' * }); * * // Remove its second segment: * path.removeSegment(1); * * // Select the path, so we can see its segments: * path.selected = true; */ removeSegment: function(index) { return this.removeSegments(index, index + 1)[0] || null; }, /** * Removes all segments from the path's {@link #segments} array. * * @name Path#removeSegments * @alias Path#clear * @function * @return {Segment[]} an array containing the removed segments */ /** * Removes the segments from the specified {@code from} index to the * {@code to} index from the path's {@link #segments} array. * * @param {Number} from the beginning index, inclusive * @param {Number} [to=segments.length] the ending index, exclusive * @return {Segment[]} an array containing the removed segments * * @example {@paperscript} * // Removing segments from a path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle({ * center: new Point(80, 50), * radius: 35, * strokeColor: 'black' * }); * * // Remove the segments from index 1 till index 2: * path.removeSegments(1, 2); * * // Select the path, so we can see its segments: * path.selected = true; */ removeSegments: function(from, to, _includeCurves) { from = from || 0; to = Base.pick(to, this._segments.length); var segments = this._segments, curves = this._curves, count = segments.length, // segment count before removal removed = segments.splice(from, to - from), amount = removed.length; if (!amount) return removed; // Update selection state accordingly for (var i = 0; i < amount; i++) { var segment = removed[i]; if (segment._selectionState) this._updateSelection(segment, segment._selectionState, 0); // Clear the indices and path references of the removed segments segment._index = segment._path = null; } // Adjust the indices of the segments above. for (var i = from, l = segments.length; i < l; i++) segments[i]._index = i; // Keep curves in sync if (curves) { // If we're removing the last segment, remove the last curve (the // one to the left of the segment, not to the right, as normally). // Also take into account closed paths, which have one curve more // than segments. var index = from > 0 && to === count + (this._closed ? 1 : 0) ? from - 1 : from, curves = curves.splice(index, amount); // Return the removed curves as well, if we're asked to include // them, but exclude the first curve, since that's shared with the // previous segment and does not connect the returned segments. if (_includeCurves) removed._curves = curves.slice(1); // Adjust segments for the curves before and after the removed ones this._adjustCurves(index, index); } this._changed(/*#=*/ Change.GEOMETRY); return removed; }, // DOCS Path#clear() clear: '#removeSegments', /** * Specifies whether an path is selected and will also return {@code true} * if the path is partially selected, i.e. one or more of its segments is * selected. * * Paper.js draws the visual outlines of selected items on top of your * project. This can be useful for debugging, as it allows you to see the * construction of paths, position of path curves, individual segment points * and bounding boxes of symbol and raster items. * * @type Boolean * @bean * @see Project#selectedItems * @see Segment#selected * @see Point#selected * * @example {@paperscript} * // Selecting an item: * var path = new Path.Circle({ * center: new Size(80, 50), * radius: 35 * }); * path.selected = true; // Select the path * * @example {@paperscript} * // A path is selected, if one or more of its segments is selected: * var path = new Path.Circle({ * center: new Size(80, 50), * radius: 35 * }); * * // Select the second segment of the path: * path.segments[1].selected = true; * * // If the path is selected (which it is), set its fill color to red: * if (path.selected) { * path.fillColor = 'red'; * } * */ /** * Specifies whether the path and all its segments are selected. Cannot be * {@code true} on an empty path. * * @type Boolean * @bean * * @example {@paperscript} * // A path is fully selected, if all of its segments are selected: * var path = new Path.Circle({ * center: new Size(80, 50), * radius: 35 * }); * path.fullySelected = true; * * var path2 = new Path.Circle({ * center: new Size(180, 50), * radius: 35 * }); * * // Deselect the second segment of the second path: * path2.segments[1].selected = false; * * // If the path is fully selected (which it is), * // set its fill color to red: * if (path.fullySelected) { * path.fillColor = 'red'; * } * * // If the second path is fully selected (which it isn't, since we just * // deselected its second segment), * // set its fill color to red: * if (path2.fullySelected) { * path2.fillColor = 'red'; * } */ isFullySelected: function() { var length = this._segments.length; return this._selected && length > 0 && this._selectedSegmentState === length * /*#=*/ SelectionState.SEGMENT; }, setFullySelected: function(selected) { // No need to call _selectSegments() when selected is false, since // #setSelected() does that for us if (selected) this._selectSegments(true); this.setSelected(selected); }, setSelected: function setSelected(selected) { // Deselect all segments when path is marked as not selected if (!selected) this._selectSegments(false); // No need to pass true for noChildren since Path has none anyway. setSelected.base.call(this, selected); }, _selectSegments: function(selected) { var length = this._segments.length; this._selectedSegmentState = selected ? length * /*#=*/ SelectionState.SEGMENT : 0; for (var i = 0; i < length; i++) this._segments[i]._selectionState = selected ? /*#=*/ SelectionState.SEGMENT : 0; }, _updateSelection: function(segment, oldState, newState) { segment._selectionState = newState; var total = this._selectedSegmentState += newState - oldState; // Set this path as selected in case we have selected segments. Do not // unselect if we're down to 0, as the path itself can still remain // selected even when empty. if (total > 0) this.setSelected(true); }, /** * Converts the curves in a path to straight lines with an even distribution * of points. The distance between the produced segments is as close as * possible to the value specified by the {@code maxDistance} parameter. * * @param {Number} maxDistance the maximum distance between the points * * @example {@paperscript} * // Flattening a circle shaped path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle({ * center: new Size(80, 50), * radius: 35 * }); * * // Select the path, so we can inspect its segments: * path.selected = true; * * // Create a copy of the path and move it 150 points to the right: * var copy = path.clone(); * copy.position.x += 150; * * // Convert its curves to points, with a max distance of 20: * copy.flatten(20); */ flatten: function(maxDistance) { var flattener = new PathFlattener(this), pos = 0, // Adapt step = maxDistance so the points distribute evenly. step = flattener.length / Math.ceil(flattener.length / maxDistance), // Add/remove half of step to end, so imprecisions are ok too. // For closed paths, remove it, because we don't want to add last // segment again end = flattener.length + (this._closed ? -step : step) / 2; // Iterate over path and evaluate and add points at given offsets var segments = []; while (pos <= end) { segments.push(new Segment(flattener.evaluate(pos, 0))); pos += step; } this.setSegments(segments); }, /** * Smooths a path by simplifying it. The {@link Path#segments} array is * analyzed and replaced by a more optimal set of segments, reducing memory * usage and speeding up drawing. * * @param {Number} [tolerance=2.5] * * @example {@paperscript height=300} * // Click and drag below to draw to draw a line, when you release the * // mouse, the is made smooth using path.simplify(): * * var path; * function onMouseDown(event) { * // If we already made a path before, deselect it: * if (path) { * path.selected = false; * } * * // Create a new path and add the position of the mouse * // as its first segment. Select it, so we can see the * // segment points: * path = new Path({ * segments: [event.point], * strokeColor: 'black', * selected: true * }); * } * * function onMouseDrag(event) { * // On every drag event, add a segment to the path * // at the position of the mouse: * path.add(event.point); * } * * function onMouseUp(event) { * // When the mouse is released, simplify the path: * path.simplify(); * path.selected = true; * } */ simplify: function(tolerance) { if (this._segments.length > 2) { var fitter = new PathFitter(this, tolerance || 2.5); this.setSegments(fitter.fit()); } }, // TODO: reduceSegments([flatness]) /** * Splits the path at the given offset. After splitting, the path will be * open. If the path was open already, splitting will result in two paths. * * @name Path#split * @function * @param {Number} offset the offset at which to split the path * as a number between 0 and {@link Path#length} * @return {Path} the newly created path after splitting, if any * * @example {@paperscript} // Splitting an open path * var path = new Path(); * path.strokeColor = 'black'; * path.add(20, 20); * * // Add an arc through {x: 90, y: 80} to {x: 160, y: 20} * path.arcTo([90, 80], [160, 20]); * * // Split the path at 30% of its length: * var path2 = path.split(path.length * 0.3); * path2.strokeColor = 'red'; * * // Move the newly created path 40px to the right: * path2.position.x += 40; * * @example {@paperscript} // Splitting a closed path * var path = new Path.Rectangle({ * from: [20, 20], * to: [80, 80], * strokeColor: 'black' * }); * * // Split the path at 60% of its length: * path.split(path.length * 0.6); * * // Move the first segment, to show where the path * // was split: * path.firstSegment.point.x += 20; * * // Select the first segment: * path.firstSegment.selected = true; */ /** * Splits the path at the given curve location. After splitting, the path * will be open. If the path was open already, splitting will result in two * paths. * * @name Path#split * @function * @param {CurveLocation} location the curve location at which to split * the path * @return {Path} the newly created path after splitting, if any * * @example {@paperscript} * var path = new Path.Circle({ * center: view.center, * radius: 40, * strokeColor: 'black' * }); * * var pointOnCircle = view.center + { * length: 40, * angle: 30 * }; * * var curveLocation = path.getNearestLocation(pointOnCircle); * * path.split(curveLocation); * path.lastSegment.selected = true; */ /** * Splits the path at the given curve index and parameter. After splitting, * the path will be open. If the path was open already, splitting will * result in two paths. * * @example {@paperscript} // Splitting an open path * // Draw a V shaped path: * var path = new Path([20, 20], [50, 80], [80, 20]); * path.strokeColor = 'black'; * * // Split the path half-way down its second curve: * var path2 = path.split(1, 0.5); * * // Give the resulting path a red stroke-color * // and move it 20px to the right: * path2.strokeColor = 'red'; * path2.position.x += 20; * * @example {@paperscript} // Splitting a closed path * var path = new Path.Rectangle({ * from: [20, 20], * to: [80, 80], * strokeColor: 'black' * }); * * // Split the path half-way down its second curve: * path.split(2, 0.5); * * // Move the first segment, to show where the path * // was split: * path.firstSegment.point.x += 20; * * // Select the first segment: * path.firstSegment.selected = true; * * @param {Number} index the index of the curve in the {@link Path#curves} * array at which to split * @param {Number} parameter the parameter at which the curve will be split * @return {Path} the newly created path after splitting, if any */ split: function(index, parameter) { if (parameter === null) return; if (arguments.length === 1) { var arg = index; // split(offset), convert offset to location if (typeof arg === 'number') arg = this.getLocationAt(arg); // split(location) index = arg.index; parameter = arg.parameter; } var tolerance = /*#=*/ Numerical.TOLERANCE; if (parameter >= 1 - tolerance) { // t == 1 is the same as t == 0 and index ++ index++; parameter--; } var curves = this.getCurves(); if (index >= 0 && index < curves.length) { // Only divide curves if we're not on an existing segment already. if (parameter > tolerance) { // Divide the curve with the index at given parameter. // Increase because dividing adds more segments to the path. curves[index++].divide(parameter, true); } // Create the new path with the segments to the right of given // parameter, which are removed from the current path. Pass true // for includeCurves, since we want to preserve and move them to // the new path through _add(), allowing us to have CurveLocation // keep the connection to the new path through moved curves. var segs = this.removeSegments(index, this._segments.length, true), path; if (this._closed) { // If the path is closed, open it and move the segments round, // otherwise create two paths. this.setClosed(false); // Just have path point to this. The moving around of segments // will happen below. path = this; } else if (index > 0) { // Pass true for _preserve, in case of CompoundPath, to avoid // reversing of path direction, which would mess with segs! // Use _clone to copy over all other attributes, including style path = this._clone(new Path().insertAbove(this, true)); } path._add(segs, 0); // Add dividing segment again. In case of a closed path, that's the // beginning segment again at the end, since we opened it. this.addSegment(segs[0]); return path; } return null; }, /** * Specifies whether the path is oriented clock-wise. * * @type Boolean * @bean */ isClockwise: function() { if (this._clockwise !== undefined) return this._clockwise; return Path.isClockwise(this._segments); }, setClockwise: function(clockwise) { // Only revers the path if its clockwise orientation is not the same // as what it is now demanded to be. // On-the-fly conversion to boolean: if (this.isClockwise() != (clockwise = !!clockwise)) this.reverse(); // Reverse only flips _clockwise state if it was already set, so let's // always set this here now. this._clockwise = clockwise; }, /** * Reverses the orientation of the path, by reversing all its segments. */ reverse: function() { this._segments.reverse(); // Reverse the handles: for (var i = 0, l = this._segments.length; i < l; i++) { var segment = this._segments[i]; var handleIn = segment._handleIn; segment._handleIn = segment._handleOut; segment._handleOut = handleIn; segment._index = i; } // Clear curves since it all has changed. this._curves = null; // Flip clockwise state if it's defined if (this._clockwise !== undefined) this._clockwise = !this._clockwise; }, // DOCS: document Path#join in more detail. /** * Joins the path with the specified path, which will be removed in the * process. * * @param {Path} path * * @example {@paperscript} * // Joining two paths: * var path = new Path({ * segments: [[30, 25], [30, 75]], * strokeColor: 'black' * }); * * var path2 = new Path({ * segments: [[200, 25], [200, 75]], * strokeColor: 'black' * }); * * // Join the paths: * path.join(path2); * * @example {@paperscript} * // Joining two paths that share a point at the start or end of their * // segments array: * var path = new Path({ * segments: [[30, 25], [30, 75]], * strokeColor: 'black' * }); * * var path2 = new Path({ * segments: [[30, 25], [80, 25]], * strokeColor: 'black' * }); * * // Join the paths: * path.join(path2); * * // After joining, path with have 3 segments, since it * // shared its first segment point with the first * // segment point of path2. * * // Select the path to show that they have joined: * path.selected = true; * * @example {@paperscript} * // Joining two paths that connect at two points: * var path = new Path({ * segments: [[30, 25], [80, 25], [80, 75]], * strokeColor: 'black' * }); * * var path2 = new Path({ * segments: [[30, 25], [30, 75], [80, 75]], * strokeColor: 'black' * }); * * // Join the paths: * path.join(path2); * * // Because the paths were joined at two points, the path is closed * // and has 4 segments. * * // Select the path to show that they have joined: * path.selected = true; */ join: function(path) { if (path) { var segments = path._segments, last1 = this.getLastSegment(), last2 = path.getLastSegment(); if (last1._point.equals(last2._point)) path.reverse(); var first1, first2 = path.getFirstSegment(); if (last1._point.equals(first2._point)) { last1.setHandleOut(first2._handleOut); this._add(segments.slice(1)); } else { first1 = this.getFirstSegment(); if (first1._point.equals(first2._point)) path.reverse(); last2 = path.getLastSegment(); if (first1._point.equals(last2._point)) { first1.setHandleIn(last2._handleIn); // Prepend all segments from path except the last one this._add(segments.slice(0, segments.length - 1), 0); } else { this._add(segments.slice()); } } if (path.closed) this._add([segments[0]]); path.remove(); // Close if they touch in both places. Fetch the segments again // since they may have changed. first1 = this.getFirstSegment(); last1 = this.getLastSegment(); if (last1._point.equals(first1._point)) { first1.setHandleIn(last1._handleIn); last1.remove(); this.setClosed(true); } this._changed(/*#=*/ Change.GEOMETRY); return true; } return false; }, /** * The approximate length of the path in points. * * @type Number * @bean */ getLength: function() { if (this._length == null) { var curves = this.getCurves(); this._length = 0; for (var i = 0, l = curves.length; i < l; i++) this._length += curves[i].getLength(); } return this._length; }, /** * The area of the path in square points. Self-intersecting paths can * contain sub-areas that cancel each other out. * * @type Number * @bean */ getArea: function() { var curves = this.getCurves(); var area = 0; for (var i = 0, l = curves.length; i < l; i++) area += curves[i].getArea(); return area; }, _getOffset: function(location) { var index = location && location.getIndex(); if (index != null) { var curves = this.getCurves(), offset = 0; for (var i = 0; i < index; i++) offset += curves[i].getLength(); var curve = curves[index]; return offset + curve.getLength(0, location.getParameter()); } return null; }, /** * Returns the curve location of the specified point if it lies on the * path, {@code null} otherwise. * @param {Point} point the point on the path. * @return {CurveLocation} the curve location of the specified point. */ getLocationOf: function(point) { // TODO: Fix argument assignment! var point = Point.read(arguments), curves = this.getCurves(); for (var i = 0, l = curves.length; i < l; i++) { var loc = curves[i].getLocationOf(point); if (loc) return loc; } return null; }, // DOCS: document Path#getLocationAt /** * {@grouptitle Positions on Paths and Curves} * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {CurveLocation} */ getLocationAt: function(offset, isParameter) { var curves = this.getCurves(), length = 0; if (isParameter) { // offset consists of curve index and curve parameter, before and // after the fractional digit. var index = ~~offset; // = Math.floor() return curves[index].getLocationAt(offset - index, true); } for (var i = 0, l = curves.length; i < l; i++) { var start = length, curve = curves[i]; length += curve.getLength(); if (length > offset) { // Found the segment within which the length lies return curve.getLocationAt(offset - start); } } // It may be that through imprecision of getLength, that the end of the // last curve was missed: if (offset <= this.getLength()) return new CurveLocation(curves[curves.length - 1], 1); return null; }, /** * Calculates the point on the path at the given offset. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the point at the given offset * * @example {@paperscript height=150} * // Finding the point on a path at a given offset: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Create a small circle shaped path at the point: * var circle = new Path.Circle({ * center: point, * radius: 3, * fillColor: 'red' * }); * * @example {@paperscript height=150} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 5; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Create a small circle shaped path at the point: * var circle = new Path.Circle({ * center: point, * radius: 3, * fillColor: 'red' * }); * } */ getPointAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getPoint(); }, /** * Calculates the tangent to the path at the given offset as a vector point. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the tangent vector at the given offset * * @example {@paperscript height=150} * // Working with the tangent vector at a given offset: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Find the tangent vector at the given offset: * var tangent = path.getTangentAt(offset); * * // Make the tangent vector 60pt long: * tangent.length = 60; * * var line = new Path({ * segments: [point, point + tangent], * strokeColor: 'red' * }) * * @example {@paperscript height=200} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 6; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Find the normal vector on the path at the given offset: * var tangent = path.getTangentAt(offset); * * // Make the tangent vector 60pt long: * tangent.length = 60; * * var line = new Path({ * segments: [point, point + tangent], * strokeColor: 'red' * }) * } */ getTangentAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getTangent(); }, /** * Calculates the normal to the path at the given offset as a vector point. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the normal vector at the given offset * * @example {@paperscript height=150} * // Working with the normal vector at a given offset: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Find the normal vector at the given offset: * var normal = path.getNormalAt(offset); * * // Make the normal vector 30pt long: * normal.length = 30; * * var line = new Path({ * segments: [point, point + normal], * strokeColor: 'red' * }); * * @example {@paperscript height=200} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path({ * strokeColor: 'black' * }); * * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 10; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Find the normal vector on the path at the given offset: * var normal = path.getNormalAt(offset); * * // Make the normal vector 30pt long: * normal.length = 30; * * var line = new Path({ * segments: [point, point + normal], * strokeColor: 'red' * }); * } */ getNormalAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getNormal(); }, /** * Returns the nearest location on the path to the specified point. * * @function * @param point {Point} the point for which we search the nearest location * @return {CurveLocation} the location on the path that's the closest to * the specified point */ getNearestLocation: function(point) { // TODO: Fix argument assignment! var point = Point.read(arguments), curves = this.getCurves(), minDist = Infinity, minLoc = null; for (var i = 0, l = curves.length; i < l; i++) { var loc = curves[i].getNearestLocation(point); if (loc._distance < minDist) { minDist = loc._distance; minLoc = loc; } } return minLoc; }, /** * Returns the nearest point on the path to the specified point. * * @function * @param point {Point} the point for which we search the nearest point * @return {Point} the point on the path that's the closest to the specified * point * * @example {@paperscript height=200} * var star = new Path.Star({ * center: view.center, * points: 10, * radius1: 30, * radius2: 60, * strokeColor: 'black' * }); * * var circle = new Path.Circle({ * center: view.center, * radius: 3, * fillColor: 'red' * }); * * function onMouseMove(event) { * // Get the nearest point from the mouse position * // to the star shaped path: * var nearestPoint = star.getNearestPoint(event.point); * * // Move the red circle to the nearest point: * circle.position = nearestPoint; * } */ getNearestPoint: function(point) { // TODO: Fix argument assignment! // We need to use point to avoid minification issues and prevent method // from turning into a bean (by removal of the point argument). var point = Point.read(arguments); return this.getNearestLocation(point).getPoint(); }, // DOCS: toShape toShape: function(insert) { if (!this._closed) return null; var segments = this._segments, type, size, radius, topCenter; function isColinear(i, j) { return segments[i].isColinear(segments[j]); } function isOrthogonal(i) { return segments[i].isOrthogonal(); } function isArc(i) { return segments[i].isArc(); } function getDistance(i, j) { return segments[i]._point.getDistance(segments[j]._point); } // See if actually have any curves in the path. Differentiate // between straight objects (line, polyline, rect, and polygon) and // objects with curves(circle, ellipse, roundedRectangle). if (this.isPolygon() && segments.length === 4 && isColinear(0, 2) && isColinear(1, 3) && isOrthogonal(1)) { type = Shape.Rectangle; size = new Size(getDistance(0, 3), getDistance(0, 1)); topCenter = segments[1]._point.add(segments[2]._point).divide(2); } else if (segments.length === 8 && isArc(0) && isArc(2) && isArc(4) && isArc(6) && isColinear(1, 5) && isColinear(3, 7)) { // It's a rounded rectangle. type = Shape.Rectangle; size = new Size(getDistance(1, 6), getDistance(0, 3)); // Subtract side lengths from total width and divide by 2 to get the // corner radius size. radius = size.subtract(new Size(getDistance(0, 7), getDistance(1, 2))).divide(2); topCenter = segments[3]._point.add(segments[4]._point).divide(2); } else if (segments.length === 4 && isArc(0) && isArc(1) && isArc(2) && isArc(3)) { // If the distance between (point0 and point2) and (point1 // and point3) are equal, then it is a circle if (Numerical.isZero(getDistance(0, 2) - getDistance(1, 3))) { type = Shape.Circle; radius = getDistance(0, 2) / 2; } else { type = Shape.Ellipse; radius = new Size(getDistance(2, 0) / 2, getDistance(3, 1) / 2); } topCenter = segments[1]._point; } if (type) { var center = this.getPosition(true), shape = new type({ center: center, size: size, radius: radius, insert: false }); // Determine and apply the shape's angle of rotation. shape.rotate(topCenter.subtract(center).getAngle() + 90); shape.setStyle(this._style); // Insert is true by default. if (insert || insert === undefined) shape.insertAbove(this); return shape; } return null; }, /** * Private method that returns and caches all the curves in this Path, which * are monotonically decreasing or increasing in the 'y' direction. * Used by PathItem#_getWinding(). */ _getMonotoneCurves: function() { var monoCurves = this._monotoneCurves, lastCurve, INCREASING = 1, DECREASING = -1, HORIZONTAL = 0; if (!monoCurves) { // Insert curve values into a cached array // Always avoid horizontal curves function insertValues(v, dir) { var y0 = v[1], y1 = v[7]; dir = dir || INCREASING; if (y0 === y1) { dir = HORIZONTAL; } else if (y0 > y1) { dir = DECREASING; } // Add a reference to subsequent curves v.push(dir); if (lastCurve) { v[9] = lastCurve; lastCurve[10] = v; } lastCurve = v; monoCurves.push(v); } // Handle bezier curves. We need to chop them into smaller curves // with defined orientation, by solving the derivative curve for // Y extrema. function insertCurves(v, dir) { var y0 = v[1], y1 = v[3], y2 = v[5], y3 = v[7], roots = [], tolerance = /*#=*/ Numerical.TOLERANCE, i, li; // Split the curve at y extrema, to get bezier curves with clear // orientation: Calculate the derivative and find its roots. var a = 3 * (y1 - y2) - y0 + y3, b = 2 * (y0 + y2) - 4 * y1, c = y1 - y0; // Keep then range to 0 .. 1 (excluding) in the search // for y extrema var count = Numerical.solveQuadratic(a, b, c, roots, tolerance, 1 - tolerance); if (count === 0) { insertValues(v, dir); } else { roots.sort(); var parts, t = roots[0]; parts = Curve.subdivide(v, t); if (count > 1) { // Now renormalize t1 to the range of the next part. t = (roots[1] - t) / (1 - t); var subparts = Curve.subdivide(parts[1], t); parts.splice(1, 1, subparts[0], subparts[1]); } for (i = 0, li = parts.length; i < li; i++) insertValues(parts[i]); } } // Insert curves that are monotonic in y direction into a cached array monoCurves = this._monotoneCurves = []; var curves = this.getCurves(), crv, vals, i, li, segments = this._segments; // If the path is not closed, we should join the end points // with a straight line, just like how filling open paths works. if (!this._closed && segments.length > 1) { curves.push(new Curve(segments[segments.length - 1]._point, segments[0]._point)); } for (i = 0, li = curves.length; i < li; i++) { crv = curves[i]; // Filter out curves of zero length vals = crv.getValues(); if (Curve.getLength(vals) === 0) continue; // Handle linear and cubic curves seperately if (crv.isLinear()) { insertValues(vals); } else { var y0 = vals[1], y1 = vals[7]; if (y0 > y1) { insertCurves(vals, DECREASING); } else if (y0 == y1 && y0 == vals[3] && y0 == vals[5]) { insertValues(vals, HORIZONTAL); } else { insertCurves(vals, INCREASING); } } } // Link, first and last curves lastCurve = monoCurves[monoCurves.length - 1]; monoCurves[0][9] = lastCurve; lastCurve.push(monoCurves[0]); } return monoCurves; }, _hitTest: function(point, options) { var that = this, style = this.getStyle(), segments = this._segments, closed = this._closed, // transformed tolerance padding, see Item#hitTest. We will add // stroke padding on top if stroke is defined. tolerancePadding = options._tolerancePadding, strokePadding = tolerancePadding, join, cap, miterLimit, area, loc, res, hasStroke = options.stroke && style.hasStroke(), hasFill = options.fill && style.hasFill(), radius = hasStroke ? style.getStrokeWidth() / 2 // Set radius to 0 so when we're hit-testing, the tolerance // is used for fill too, through stroke functionality. : hasFill ? 0 : null; if (radius != null) { if (radius > 0) { join = style.getStrokeJoin(); cap = style.getStrokeCap(); miterLimit = radius * style.getMiterLimit(); // Add the stroke radius to tolerance padding. strokePadding = tolerancePadding.add(new Point(radius, radius)); } else { join = cap = 'round'; } // Using tolerance padding for fill tests will also work if there is // no stroke, in which case radius = 0 and we will test for stroke // locations to extend the fill area by tolerance. } function isCloseEnough(pt, padding) { return point.subtract(pt).divide(padding).length <= 1; } function checkSegmentPoint(seg, pt, name) { if (!options.selected || pt.isSelected()) { var anchor = seg._point; if (pt !== anchor) pt = pt.add(anchor); if (isCloseEnough(pt, strokePadding)) { return new HitResult(name, that, { segment: seg, point: pt }); } } } function checkSegmentPoints(seg, ends) { // Note, when checking for ends, we don't also check for handles, // since this will happen afterwards in a separate loop, see below. return (ends || options.segments) && checkSegmentPoint(seg, seg._point, 'segment') || (!ends && options.handles) && ( checkSegmentPoint(seg, seg._handleIn, 'handle-in') || checkSegmentPoint(seg, seg._handleOut, 'handle-out')); } // Code to check stroke join / cap areas function addAreaPoint(point) { area.add(point); } function checkSegmentStroke(segment) { // Handle joins / caps that are not round specificelly, by // hit-testing their polygon areas. if (join !== 'round' || cap !== 'round') { // Create an 'internal' path without id and outside the DOM // to run the hit-test on it. area = new Path({ internal: true, closed: true }); if (closed || segment._index > 0 && segment._index < segments.length - 1) { // It's a join. See that it's not a round one (one of // the handles has to be zero too for this!) if (join !== 'round' && (segment._handleIn.isZero() || segment._handleOut.isZero())) Path._addSquareJoin(segment, join, radius, miterLimit, addAreaPoint, true); } else if (cap !== 'round') { // It's a cap Path._addSquareCap(segment, cap, radius, addAreaPoint, true); } // See if the above produced an area to check for if (!area.isEmpty()) { // Also use stroke check with tolerancePadding if the point // is not inside the area itself, to use test caps and joins // with same tolerance. var loc; return area.contains(point) || (loc = area.getNearestLocation(point)) && isCloseEnough(loc.getPoint(), tolerancePadding); } } // Fallback scenario is a round join / cap. return isCloseEnough(segment._point, strokePadding); } // If we're asked to query for segments, ends or handles, do all that // before stroke or fill. if (options.ends && !options.segments && !closed) { if (res = checkSegmentPoints(segments[0], true) || checkSegmentPoints(segments[segments.length - 1], true)) return res; } else if (options.segments || options.handles) { for (var i = 0, l = segments.length; i < l; i++) if (res = checkSegmentPoints(segments[i])) return res; } // If we're querying for stroke, perform that before fill if (radius != null) { loc = this.getNearestLocation(point); if (loc) { // Now see if we're on a segment, and if so, check for its // stroke join / cap first. If not, do a normal radius check // for round strokes. var parameter = loc.getParameter(); if (parameter === 0 || parameter === 1) { if (!checkSegmentStroke(loc.getSegment())) loc = null; } else if (!isCloseEnough(loc.getPoint(), strokePadding)) { loc = null; } } // If we have miter joins, we may not be done yet, since they can be // longer than the radius. Check for each segment within reach now. if (!loc && join === 'miter') { for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; if (point.getDistance(segment._point) <= miterLimit && checkSegmentStroke(segment)) { loc = segment.getLocation(); break; } } } } // Don't process loc yet, as we also need to query for stroke after fill // in some cases. Simply skip fill query if we already have a matching // stroke. If we have a loc and no stroke then it's a result for fill. return !loc && hasFill && this._contains(point) || loc && !hasStroke ? new HitResult('fill', this) : loc ? new HitResult('stroke', this, { location: loc, // It's fine performance wise to call getPoint() again // since it was already called before. point: loc.getPoint() }) : null; } // TODO: intersects(item) // TODO: contains(item) // TODO: intersect(item) // TODO: unite(item) // TODO: exclude(item) }, new function() { // Scope for drawing // Note that in the code below we're often accessing _x and _y on point // objects that were read from segments. This is because the SegmentPoint // class overrides the plain x / y properties with getter / setters and // stores the values in these private properties internally. To avoid // calling of getter functions all the time we directly access these private // properties here. The distinction between normal Point objects and // SegmentPoint objects maybe seem a bit tedious but is worth the benefit in // performance. function drawHandles(ctx, segments, matrix, size) { var half = size / 2; function drawHandle(index) { var hX = coords[index], hY = coords[index + 1]; if (pX != hX || pY != hY) { ctx.beginPath(); ctx.moveTo(pX, pY); ctx.lineTo(hX, hY); ctx.stroke(); ctx.beginPath(); ctx.arc(hX, hY, half, 0, Math.PI * 2, true); ctx.fill(); } } var coords = new Array(6); for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; segment._transformCoordinates(matrix, coords, false); var state = segment._selectionState, pX = coords[0], pY = coords[1]; if (state & /*#=*/ SelectionState.HANDLE_IN) drawHandle(2); if (state & /*#=*/ SelectionState.HANDLE_OUT) drawHandle(4); // Draw a rectangle at segment.point: ctx.save(); ctx.beginPath(); ctx.rect(pX - half, pY - half, size, size); ctx.fill(); // If the point is not selected, draw a white square that is 1 px // smaller on all sides: if (!(state & /*#=*/ SelectionState.POINT)) { ctx.beginPath(); ctx.rect(pX - half + 1, pY - half + 1, size - 2, size - 2); ctx.fillStyle = '#ffffff'; ctx.fill(); } ctx.restore(); } } function drawSegments(ctx, path, matrix) { var segments = path._segments, length = segments.length, coords = new Array(6), first = true, curX, curY, prevX, prevY, inX, inY, outX, outY; function drawSegment(i) { var segment = segments[i]; // Optimise code when no matrix is provided by accessing semgent // points hand handles directly, since this is the default when // drawing paths. Matrix is only used for drawing selections. if (matrix) { segment._transformCoordinates(matrix, coords, false); curX = coords[0]; curY = coords[1]; } else { var point = segment._point; curX = point._x; curY = point._y; } if (first) { ctx.moveTo(curX, curY); first = false; } else { if (matrix) { inX = coords[2]; inY = coords[3]; } else { var handle = segment._handleIn; inX = curX + handle._x; inY = curY + handle._y; } if (inX == curX && inY == curY && outX == prevX && outY == prevY) { ctx.lineTo(curX, curY); } else { ctx.bezierCurveTo(outX, outY, inX, inY, curX, curY); } } prevX = curX; prevY = curY; if (matrix) { outX = coords[4]; outY = coords[5]; } else { var handle = segment._handleOut; outX = prevX + handle._x; outY = prevY + handle._y; } } for (var i = 0; i < length; i++) drawSegment(i); // Close path by drawing first segment again if (path._closed && length > 0) drawSegment(0); } return { _draw: function(ctx, param) { var clip = param.clip, // Also mark this Path as _compound so _changed() knows about it compound = this._compound = param.compound; if (!compound) ctx.beginPath(); var style = this.getStyle(), hasFill = style.hasFill(), hasStroke = style.hasStroke(), dashArray = style.getDashArray(), // dashLength is only set if we can't draw dashes natively dashLength = !paper.support.nativeDash && hasStroke && dashArray && dashArray.length; function getOffset(i) { // Negative modulo is necessary since we're stepping back // in the dash sequence first. return dashArray[((i % dashLength) + dashLength) % dashLength]; } if (this._currentPath) { ctx.currentPath = this._currentPath; } else if (hasFill || hasStroke && !dashLength || compound || clip){ // Prepare the canvas path if we have any situation that // requires it to be defined. drawSegments(ctx, this); if (this._closed) ctx.closePath(); // CompoundPath collects its own _currentPath if (!compound) this._currentPath = ctx.currentPath; } if (!clip && !compound && (hasFill || hasStroke)) { // If the path is part of a compound path or doesn't have a fill // or stroke, there is no need to continue. this._setStyles(ctx); if (hasFill) { ctx.fill(style.getWindingRule()); // If shadowColor is defined, clear it after fill, so it // won't be applied to both fill and stroke. If the path is // only stroked, we don't have to clear it. ctx.shadowColor = 'rgba(0,0,0,0)'; } if (hasStroke) { if (dashLength) { // We cannot use the path created by drawSegments above // Use CurveFlatteners to draw dashed paths: // NOTE: We don't cache this path in another currentPath // since browsers that support currentPath also support // native dashes. ctx.beginPath(); var flattener = new PathFlattener(this), length = flattener.length, from = -style.getDashOffset(), to, i = 0; from = from % length; // Step backwards in the dash sequence first until the // from parameter is below 0. while (from > 0) { from -= getOffset(i--) + getOffset(i--); } while (from < length) { to = from + getOffset(i++); if (from > 0 || to > 0) flattener.drawPart(ctx, Math.max(from, 0), Math.max(to, 0)); from = to + getOffset(i++); } } ctx.stroke(); } } }, _drawSelected: function(ctx, matrix) { ctx.beginPath(); drawSegments(ctx, this, matrix); // Now stroke it and draw its handles: ctx.stroke(); drawHandles(ctx, this._segments, matrix, this._project.options.handleSize || 4); } }; }, new function() { // Path Smoothing /** * Solves a tri-diagonal system for one of coordinates (x or y) of first * bezier control points. * * @param rhs right hand side vector. * @return Solution vector. */ function getFirstControlPoints(rhs) { var n = rhs.length, x = [], // Solution vector. tmp = [], // Temporary workspace. b = 2; x[0] = rhs[0] / b; // Decomposition and forward substitution. for (var i = 1; i < n; i++) { tmp[i] = 1 / b; b = (i < n - 1 ? 4 : 2) - tmp[i]; x[i] = (rhs[i] - x[i - 1]) / b; } // Back-substitution. for (var i = 1; i < n; i++) { x[n - i - 1] -= tmp[n - i] * x[n - i]; } return x; } return { // Note: Documentation for smooth() is in PathItem smooth: function() { // This code is based on the work by Oleg V. Polikarpotchkin, // http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry // It was extended to support closed paths by averaging overlapping // beginnings and ends. The result of this approach is very close to // Polikarpotchkin's closed curve solution, but reuses the same // algorithm as for open paths, and is probably executing faster as // well, so it is preferred. var segments = this._segments, size = segments.length, closed = this._closed, n = size, // Add overlapping ends for averaging handles in closed paths overlap = 0; if (size <= 2) return; if (closed) { // Overlap up to 4 points since averaging beziers affect the 4 // neighboring points overlap = Math.min(size, 4); n += Math.min(size, overlap) * 2; } var knots = []; for (var i = 0; i < size; i++) knots[i + overlap] = segments[i]._point; if (closed) { // If we're averaging, add the 4 last points again at the // beginning, and the 4 first ones at the end. for (var i = 0; i < overlap; i++) { knots[i] = segments[i + size - overlap]._point; knots[i + size + overlap] = segments[i]._point; } } else { n--; } // Calculate first Bezier control points // Right hand side vector var rhs = []; // Set right hand side X values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i]._x + 2 * knots[i + 1]._x; rhs[0] = knots[0]._x + 2 * knots[1]._x; rhs[n - 1] = 3 * knots[n - 1]._x; // Get first control points X-values var x = getFirstControlPoints(rhs); // Set right hand side Y values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i]._y + 2 * knots[i + 1]._y; rhs[0] = knots[0]._y + 2 * knots[1]._y; rhs[n - 1] = 3 * knots[n - 1]._y; // Get first control points Y-values var y = getFirstControlPoints(rhs); if (closed) { // Do the actual averaging simply by linearly fading between the // overlapping values. for (var i = 0, j = size; i < overlap; i++, j++) { var f1 = i / overlap, f2 = 1 - f1, ie = i + overlap, je = j + overlap; // Beginning x[j] = x[i] * f1 + x[j] * f2; y[j] = y[i] * f1 + y[j] * f2; // End x[je] = x[ie] * f2 + x[je] * f1; y[je] = y[ie] * f2 + y[je] * f1; } n--; } var handleIn = null; // Now set the calculated handles for (var i = overlap; i <= n - overlap; i++) { var segment = segments[i - overlap]; if (handleIn) segment.setHandleIn(handleIn.subtract(segment._point)); if (i < n) { segment.setHandleOut( new Point(x[i], y[i]).subtract(segment._point)); handleIn = i < n - 1 ? new Point( 2 * knots[i + 1]._x - x[i + 1], 2 * knots[i + 1]._y - y[i + 1]) : new Point( (knots[n]._x + x[n - 1]) / 2, (knots[n]._y + y[n - 1]) / 2); } } if (closed && handleIn) { var segment = this._segments[0]; segment.setHandleIn(handleIn.subtract(segment._point)); } } }; }, new function() { // PostScript-style drawing commands /** * Helper method that returns the current segment and checks if a moveTo() * command is required first. */ function getCurrentSegment(that) { var segments = that._segments; if (segments.length == 0) throw new Error('Use a moveTo() command first'); return segments[segments.length - 1]; } return { // Note: Documentation for these methods is found in PathItem, as they // are considered abstract methods of PathItem and need to be defined in // all implementing classes. moveTo: function(/* point */) { // moveTo should only be called at the beginning of paths. But it // can ce called again if there is nothing drawn yet, in which case // the first segment gets readjusted. if (this._segments.length === 1) this.removeSegment(0); // Let's not be picky about calling moveTo() when not at the // beginning of a path, just bail out: if (!this._segments.length) this._add([ new Segment(Point.read(arguments)) ]); }, moveBy: function(/* point */) { throw new Error('moveBy() is unsupported on Path items.'); }, lineTo: function(/* point */) { // Let's not be picky about calling moveTo() first: this._add([ new Segment(Point.read(arguments)) ]); }, cubicCurveTo: function(/* handle1, handle2, to */) { var handle1 = Point.read(arguments), handle2 = Point.read(arguments), to = Point.read(arguments), // First modify the current segment: current = getCurrentSegment(this); // Convert to relative values: current.setHandleOut(handle1.subtract(current._point)); // And add the new segment, with handleIn set to c2 this._add([ new Segment(to, handle2.subtract(to)) ]); }, quadraticCurveTo: function(/* handle, to */) { var handle = Point.read(arguments), to = Point.read(arguments), current = getCurrentSegment(this)._point; // This is exact: // If we have the three quad points: A E D, // and the cubic is A B C D, // B = E + 1/3 (A - E) // C = E + 1/3 (D - E) this.cubicCurveTo( handle.add(current.subtract(handle).multiply(1 / 3)), handle.add(to.subtract(handle).multiply(1 / 3)), to ); }, curveTo: function(/* through, to, parameter */) { var through = Point.read(arguments), to = Point.read(arguments), t = Base.pick(Base.read(arguments), 0.5), t1 = 1 - t, current = getCurrentSegment(this)._point, // handle = (through - (1 - t)^2 * current - t^2 * to) / // (2 * (1 - t) * t) handle = through.subtract(current.multiply(t1 * t1)) .subtract(to.multiply(t * t)).divide(2 * t * t1); if (handle.isNaN()) throw new Error( 'Cannot put a curve through points with parameter = ' + t); this.quadraticCurveTo(handle, to); }, arcTo: function(/* to, clockwise | through, to */) { // Get the start point: var current = getCurrentSegment(this), from = current._point, through, to = Point.read(arguments), // Peek at next value to see if it's clockwise, // with true as default value. clockwise = Base.pick(Base.peek(arguments), true); if (typeof clockwise === 'boolean') { // arcTo(to, clockwise) var middle = from.add(to).divide(2), through = middle.add(middle.subtract(from).rotate( clockwise ? -90 : 90)); } else { // arcTo(through, to) through = to; to = Point.read(arguments); } // Construct the two perpendicular middle lines to (from, through) // and (through, to), and intersect them to get the center var l1 = new Line(from.add(through).divide(2), through.subtract(from).rotate(90), true), l2 = new Line(through.add(to).divide(2), to.subtract(through).rotate(90), true), center = l1.intersect(l2, true), line = new Line(from, to), throughSide = line.getSide(through); if (!center) { // If the two lines are colinear, there cannot be an arc as the // circle is infinitely big and has no center point. If side is // 0, the connecting arc line of this huge circle is a line // between the two points, so we can use #lineTo instead. // Otherwise we bail out: if (!throughSide) return this.lineTo(to); throw new Error('Cannot put an arc through the given points: ' + [from, through, to]); } var vector = from.subtract(center), extent = vector.getDirectedAngle(to.subtract(center)), centerSide = line.getSide(center); if (centerSide == 0) { // If the center is lying on the line, we might have gotten the // wrong sign for extent above. Use the sign of the side of the // through point. extent = throughSide * Math.abs(extent); } else if (throughSide == centerSide) { // If the center is on the same side of the line (from, to) as // the through point, we're extending bellow 180 degrees and // need to adapt extent. extent -= 360 * (extent < 0 ? -1 : 1); } var ext = Math.abs(extent), count = ext >= 360 ? 4 : Math.ceil(ext / 90), inc = extent / count, half = inc * Math.PI / 360, z = 4 / 3 * Math.sin(half) / (1 + Math.cos(half)), segments = []; for (var i = 0; i <= count; i++) { // Explicitely use to point for last segment, since depending // on values the calculation adds imprecision: var pt = i < count ? center.add(vector) : to; var out = i < count ? vector.rotate(90).multiply(z) : null; if (i == 0) { // Modify startSegment current.setHandleOut(out); } else { // Add new Segment segments.push( new Segment(pt, vector.rotate(-90).multiply(z), out)); } vector = vector.rotate(inc); } // Add all segments at once at the end for higher performance this._add(segments); }, lineBy: function(/* to */) { var to = Point.read(arguments), current = getCurrentSegment(this)._point; this.lineTo(current.add(to)); }, curveBy: function(/* through, to, parameter */) { var through = Point.read(arguments), to = Point.read(arguments), parameter = Base.read(arguments), current = getCurrentSegment(this)._point; this.curveTo(current.add(through), current.add(to), parameter); }, cubicCurveBy: function(/* handle1, handle2, to */) { var handle1 = Point.read(arguments), handle2 = Point.read(arguments), to = Point.read(arguments), current = getCurrentSegment(this)._point; this.cubicCurveTo(current.add(handle1), current.add(handle2), current.add(to)); }, quadraticCurveBy: function(/* handle, to */) { var handle = Point.read(arguments), to = Point.read(arguments), current = getCurrentSegment(this)._point; this.quadraticCurveTo(current.add(handle), current.add(to)); }, arcBy: function(/* to, clockwise | through, to */) { var current = getCurrentSegment(this)._point, point = current.add(Point.read(arguments)), // Peek at next value to see if it's clockwise, with true as // default value. clockwise = Base.pick(Base.peek(arguments), true); if (typeof clockwise === 'boolean') { this.arcTo(point, clockwise); } else { this.arcTo(point, current.add(Point.read(arguments))); } }, closePath: function() { var first = this.getFirstSegment(), last = this.getLastSegment(); if (first._point.equals(last._point)) { first.setHandleIn(last._handleIn); last.remove(); } this.setClosed(true); } }; }, { // A dedicated scope for the tricky bounds calculations // We define all the different getBounds functions as static methods on Path // and have #_getBounds directly access these. All static bounds functions // below have the same first four parameters: segments, closed, style, // matrix, so they can be called from #_getBounds() and also be used in // Curve. But not all of them use all these parameters, and some define // additional ones after. _getBounds: function(getter, matrix) { // See #draw() for an explanation of why we can access _style // properties directly here: return Path[getter](this._segments, this._closed, this.getStyle(), matrix); }, // Mess with indentation in order to get more line-space below: statics: { /** * Determines whether the segments describe a path in clockwise or counter- * clockwise orientation. * * @private */ isClockwise: function(segments) { var sum = 0; // Method derived from: // http://stackoverflow.com/questions/1165647 // We treat the curve points and handles as the outline of a polygon of // which we determine the orientation using the method of calculating // the sum over the edges. This will work even with non-convex polygons, // telling you whether it's mostly clockwise // TODO: Check if this works correctly for all open paths. for (var i = 0, l = segments.length; i < l; i++) { var v = Curve.getValues( segments[i], segments[i + 1 < l ? i + 1 : 0]); for (var j = 2; j < 8; j += 2) sum += (v[j - 2] - v[j]) * (v[j + 1] + v[j - 1]); } return sum > 0; }, /** * Returns the bounding rectangle of the item excluding stroke width. * * @private */ getBounds: function(segments, closed, style, matrix, strokePadding) { var first = segments[0]; // If there are no segments, return "empty" rectangle, just like groups, // since #bounds is assumed to never return null. if (!first) return new Rectangle(); var coords = new Array(6), // Make coordinates for first segment available in prevCoords. prevCoords = first._transformCoordinates(matrix, new Array(6), false), min = prevCoords.slice(0, 2), // Start with values of first point max = min.slice(), // clone roots = new Array(2); function processSegment(segment) { segment._transformCoordinates(matrix, coords, false); for (var i = 0; i < 2; i++) { Curve._addBounds( prevCoords[i], // prev.point prevCoords[i + 4], // prev.handleOut coords[i + 2], // segment.handleIn coords[i], // segment.point, i, strokePadding ? strokePadding[i] : 0, min, max, roots); } // Swap coordinate buffers. var tmp = prevCoords; prevCoords = coords; coords = tmp; } for (var i = 1, l = segments.length; i < l; i++) processSegment(segments[i]); if (closed) processSegment(first); return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]); }, /** * Returns the bounding rectangle of the item including stroke width. * * @private */ getStrokeBounds: function(segments, closed, style, matrix) { // TODO: Find a way to reuse 'bounds' cache instead? if (!style.hasStroke()) return Path.getBounds(segments, closed, style, matrix); var length = segments.length - (closed ? 0 : 1), radius = style.getStrokeWidth() / 2, padding = Path._getPenPadding(radius, matrix), bounds = Path.getBounds(segments, closed, style, matrix, padding), join = style.getStrokeJoin(), cap = style.getStrokeCap(), miterLimit = radius * style.getMiterLimit(); // Create a rectangle of padding size, used for union with bounds // further down var joinBounds = new Rectangle(new Size(padding).multiply(2)); function add(point) { bounds = bounds.include(matrix ? matrix._transformPoint(point, point) : point); } function addJoin(segment, join) { // When both handles are set in a segment, the join setting is // ignored and round is always used. if (join === 'round' || !segment._handleIn.isZero() && !segment._handleOut.isZero()) { bounds = bounds.unite(joinBounds.setCenter(matrix ? matrix._transformPoint(segment._point) : segment._point)); } else { Path._addSquareJoin(segment, join, radius, miterLimit, add); } } function addCap(segment, cap) { if (cap === 'round') { addJoin(segment, cap); } else { Path._addSquareCap(segment, cap, radius, add); } } for (var i = 1; i < length; i++) addJoin(segments[i], join); if (closed) { addJoin(segments[0], join); } else if (length > 0) { addCap(segments[0], cap); addCap(segments[segments.length - 1], cap); } return bounds; }, /** * Returns the horizontal and vertical padding that a transformed round * stroke adds to the bounding box, by calculating the dimensions of a * rotated ellipse. */ _getPenPadding: function(radius, matrix) { if (!matrix) return [radius, radius]; // If a matrix is provided, we need to rotate the stroke circle // and calculate the bounding box of the resulting rotated elipse: // Get rotated hor and ver vectors, and determine rotation angle // and elipse values from them: var mx = matrix.shiftless(), hor = mx.transform(new Point(radius, 0)), ver = mx.transform(new Point(0, radius)), phi = hor.getAngleInRadians(), a = hor.getLength(), b = ver.getLength(); // Formula for rotated ellipses: // x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // Derivates (by Wolfram Alpha): // derivative of x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // dx/dt = a sin(t) cos(phi) + b cos(t) sin(phi) = 0 // derivative of y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // dy/dt = b cos(t) cos(phi) - a sin(t) sin(phi) = 0 // This can be simplified to: // tan(t) = -b * tan(phi) / a // x // tan(t) = b * cot(phi) / a // y // Solving for t gives: // t = pi * n - arctan(b * tan(phi) / a) // x // t = pi * n + arctan(b * cot(phi) / a) // = pi * n + arctan(b / tan(phi) / a) // y var sin = Math.sin(phi), cos = Math.cos(phi), tan = Math.tan(phi), tx = -Math.atan(b * tan / a), ty = Math.atan(b / (tan * a)); // Due to symetry, we don't need to cycle through pi * n solutions: return [Math.abs(a * Math.cos(tx) * cos - b * Math.sin(tx) * sin), Math.abs(b * Math.sin(ty) * cos + a * Math.cos(ty) * sin)]; }, _addSquareJoin: function(segment, join, radius, miterLimit, addPoint, area) { // Treat bevel and miter in one go, since they share a lot of code. var curve2 = segment.getCurve(), curve1 = curve2.getPrevious(), point = curve2.getPointAt(0, true), normal1 = curve1.getNormalAt(1, true), normal2 = curve2.getNormalAt(0, true), step = normal1.getDirectedAngle(normal2) < 0 ? -radius : radius; normal1.setLength(step); normal2.setLength(step); if (area) { addPoint(point); addPoint(point.add(normal1)); } if (join === 'miter') { // Intersect the two lines var corner = new Line( point.add(normal1), new Point(-normal1.y, normal1.x), true ).intersect(new Line( point.add(normal2), new Point(-normal2.y, normal2.x), true ), true); // See if we actually get a bevel point and if its distance is below // the miterLimit. If not, make a normal bevel. if (corner && point.getDistance(corner) <= miterLimit) { addPoint(corner); if (!area) return; } } // Produce a normal bevel if (!area) addPoint(point.add(normal1)); addPoint(point.add(normal2)); }, _addSquareCap: function(segment, cap, radius, addPoint, area) { // Calculate the corner points of butt and square caps var point = segment._point, loc = segment.getLocation(), normal = loc.getNormal().normalize(radius); if (area) { addPoint(point.subtract(normal)); addPoint(point.add(normal)); } // For square caps, we need to step away from point in the direction of // the tangent, which is the rotated normal. // Checking loc.getParameter() for 0 is to see whether this is the first // or the last segment of the open path, in order to determine in which // direction to move the point. if (cap === 'square') point = point.add(normal.rotate(loc.getParameter() == 0 ? -90 : 90)); addPoint(point.add(normal)); addPoint(point.subtract(normal)); }, /** * Returns the bounding rectangle of the item including handles. * * @private */ getHandleBounds: function(segments, closed, style, matrix, strokePadding, joinPadding) { var coords = new Array(6), x1 = Infinity, x2 = -x1, y1 = x1, y2 = x2; for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; segment._transformCoordinates(matrix, coords, false); for (var j = 0; j < 6; j += 2) { // Use different padding for points or handles var padding = j == 0 ? joinPadding : strokePadding, paddingX = padding ? padding[0] : 0, paddingY = padding ? padding[1] : 0, x = coords[j], y = coords[j + 1], xn = x - paddingX, xx = x + paddingX, yn = y - paddingY, yx = y + paddingY; if (xn < x1) x1 = xn; if (xx > x2) x2 = xx; if (yn < y1) y1 = yn; if (yx > y2) y2 = yx; } } return new Rectangle(x1, y1, x2 - x1, y2 - y1); }, /** * Returns the rough bounding rectangle of the item that is sure to include * all of the drawing, including stroke width. * * @private */ getRoughBounds: function(segments, closed, style, matrix) { // Delegate to handleBounds, but pass on radius values for stroke and // joins. Hanlde miter joins specially, by passing the largets radius // possible. var strokeRadius = style.hasStroke() ? style.getStrokeWidth() / 2 : 0, joinRadius = strokeRadius; if (strokeRadius > 0) { if (style.getStrokeJoin() === 'miter') joinRadius = strokeRadius * style.getMiterLimit(); if (style.getStrokeCap() === 'square') joinRadius = Math.max(joinRadius, strokeRadius * Math.sqrt(2)); } return Path.getHandleBounds(segments, closed, style, matrix, Path._getPenPadding(strokeRadius, matrix), Path._getPenPadding(joinRadius, matrix)); } }});