/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name Curve * * @class The Curve object represents the parts of a path that are connected by * two following {@link Segment} objects. The curves of a path can be accessed * through its {@link Path#curves} array. * * While a segment describe the anchor point and its incoming and outgoing * handles, a Curve object describes the curve passing between two such * segments. Curves and segments represent two different ways of looking at the * same thing, but focusing on different aspects. Curves for example offer many * convenient ways to work with parts of the path, finding lengths, positions or * tangents at given offsets. */ var Curve = this.Curve = Base.extend(/** @lends Curve# */{ /** * Creates a new curve object. * * @param {Segment} segment1 * @param {Segment} segment2 */ initialize: function(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) { var count = arguments.length; if (count == 0) { this._segment1 = new Segment(); this._segment2 = new Segment(); } else if (count == 1) { // TODO: If beans are not activated, this won't copy from // an existing segment. OK? this._segment1 = new Segment(arg0.segment1); this._segment2 = new Segment(arg0.segment2); } else if (count == 2) { this._segment1 = new Segment(arg0); this._segment2 = new Segment(arg1); } else if (count == 4) { this._segment1 = new Segment(arg0, null, arg1); this._segment2 = new Segment(arg3, arg2, null); } else if (count == 8) { // An array as returned by getValues var p1 = Point.create(arg0, arg1), p2 = Point.create(arg6, arg7); this._segment1 = new Segment(p1, null, Point.create(arg2, arg3).subtract(p1)); this._segment2 = new Segment(p2, Point.create(arg4, arg5).subtract(p2), null); } }, _changed: function() { // Clear cached values. delete this._length; }, /** * The first anchor point of the curve. * * @type Point * @bean */ getPoint1: function() { return this._segment1._point; }, setPoint1: function(point) { point = Point.read(arguments); this._segment1._point.set(point.x, point.y); }, /** * The second anchor point of the curve. * * @type Point * @bean */ getPoint2: function() { return this._segment2._point; }, setPoint2: function(point) { point = Point.read(arguments); this._segment2._point.set(point.x, point.y); }, /** * The handle point that describes the tangent in the first anchor point. * * @type Point * @bean */ getHandle1: function() { return this._segment1._handleOut; }, setHandle1: function(point) { point = Point.read(arguments); this._segment1._handleOut.set(point.x, point.y); }, /** * The handle point that describes the tangent in the second anchor point. * * @type Point * @bean */ getHandle2: function() { return this._segment2._handleIn; }, setHandle2: function(point) { point = Point.read(arguments); this._segment2._handleIn.set(point.x, point.y); }, /** * The first segment of the curve. * * @type Segment * @bean */ getSegment1: function() { return this._segment1; }, /** * The second segment of the curve. * * @type Segment * @bean */ getSegment2: function() { return this._segment2; }, /** * The path that the curve belongs to. * * @type Path * @bean */ getPath: function() { return this._path; }, /** * The index of the curve in the {@link Path#curves} array. * * @type Number * @bean */ getIndex: function() { return this._segment1._index; }, /** * The next curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getNext: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index + 1] || this._path._closed && curves[0]) || null; }, /** * The previous curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getPrevious: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index - 1] || this._path._closed && curves[curves.length - 1]) || null; }, /** * Specifies whether the handles of the curve are selected. * * @type Boolean * @bean */ isSelected: function() { return this.getHandle1().isSelected() && this.getHandle2().isSelected(); }, setSelected: function(selected) { this.getHandle1().setSelected(selected); this.getHandle2().setSelected(selected); }, getValues: function(matrix) { return Curve.getValues(this._segment1, this._segment2, matrix); }, getPoints: function(matrix) { // Convert to array of absolute points var coords = this.getValues(matrix), points = []; for (var i = 0; i < 8; i += 2) points.push(Point.create(coords[i], coords[i + 1])); return points; }, // DOCS: document Curve#getLength(from, to) /** * The approximated length of the curve in points. * * @type Number * @bean */ getLength: function(/* from, to */) { // Hide parameters from Bootstrap so it injects bean too var from = arguments[0], to = arguments[1]; fullLength = arguments.length == 0 || from == 0 && to == 1; if (fullLength && this._length != null) return this._length; var length = Curve.getLength(this.getValues(), from, to); if (fullLength) this._length = length; return length; }, getPart: function(from, to) { return new Curve(Curve.getPart(this.getValues(), from, to)); }, /** * Checks if this curve is linear, meaning it does not define any curve * handle. * @return {Boolean} {@true the curve is linear} */ isLinear: function() { return this._segment1._handleOut.isZero() && this._segment2._handleIn.isZero(); }, // PORT: Add support for start parameter to Sg // PORT: Rename #getParameter(length) -> #getParameterAt(offset) // DOCS: Document #getParameter(length, start) /** * @param {Number} offset * @param {Number} [start] * @return {Number} */ getParameterAt: function(offset, start) { return Curve.getParameterAt(this.getValues(), offset, start !== undefined ? start : offset < 0 ? 1 : 0); }, /** * Returns the point on the curve at the specified position. * * @param {Number} parameter the position at which to find the point as * a value between {@code 0} and {@code 1}. * @return {Point} */ getPoint: function(parameter) { return Curve.evaluate(this.getValues(), parameter, 0); }, /** * Returns the tangent point on the curve at the specified position. * * @param {Number} parameter the position at which to find the tangent * point as a value between {@code 0} and {@code 1}. */ getTangent: function(parameter) { return Curve.evaluate(this.getValues(), parameter, 1); }, /** * Returns the normal point on the curve at the specified position. * * @param {Number} parameter the position at which to find the normal * point as a value between {@code 0} and {@code 1}. */ getNormal: function(parameter) { return Curve.evaluate(this.getValues(), parameter, 2); }, /** * @param {Point} point * @return {Number} */ getParameter: function(point) { point = Point.read(point); return Curve.getParameter(this.getValues(), point.x, point.y); }, getCrossings: function(point, matrix) { // Implement the crossing number algorithm: // http://en.wikipedia.org/wiki/Point_in_polygon // Solve the y-axis cubic polynominal for point.y and count all // solutions to the right of point.x as crossings. var vals = this.getValues(matrix), roots = Curve.solveCubic(vals, 1, point.y), crossings = 0; for (var i = 0, l = roots != Infinity && roots.length; i < l; i++) { var t = roots[i]; if (t >= 0 && t < 1 && Curve.evaluate(vals, t, 0).x > point.x) { // If we're close to 0 and are not changing y-direction from the // previous curve, do not count this root, as we're merely // touching a tip. Passing 1 for Curve.evaluate()'s type means // we're calculating tangents, and then check their y-slope for // a change of direction: if (t < Numerical.TOLERANCE && Curve.evaluate( this.getPrevious().getValues(matrix), 1, 1).y * Curve.evaluate(vals, t, 1).y >= 0) continue; crossings++; } } return crossings; }, // TODO: getLocation // TODO: getIntersections // TODO: adjustThroughPoint /** * Returns a reversed version of the curve, without modifying the curve * itself. * * @return {Curve} a reversed version of the curve */ reverse: function() { return new Curve(this._segment2.reverse(), this._segment1.reverse()); }, // TODO: divide // TODO: split /** * Returns a copy of the curve. * * @return {Curve} */ clone: function() { return new Curve(this._segment1, this._segment2); }, /** * @return {String} A string representation of the curve. */ toString: function() { var parts = [ 'point1: ' + this._segment1._point ]; if (!this._segment1._handleOut.isZero()) parts.push('handle1: ' + this._segment1._handleOut); if (!this._segment2._handleIn.isZero()) parts.push('handle2: ' + this._segment2._handleIn); parts.push('point2: ' + this._segment2._point); return '{ ' + parts.join(', ') + ' }'; }, statics: { create: function(path, segment1, segment2) { var curve = new Curve(Curve.dont); curve._path = path; curve._segment1 = segment1; curve._segment2 = segment2; return curve; }, getValues: function(segment1, segment2, matrix) { var p1 = segment1._point, h1 = segment1._handleOut, h2 = segment2._handleIn, p2 = segment2._point, coords = [ p1._x, p1._y, p1._x + h1._x, p1._y + h1._y, p2._x + h2._x, p2._y + h2._y, p2._x, p2._y ]; return matrix ? matrix._transformCoordinates(coords, 0, coords, 0, 4) : coords; }, evaluate: function(v, t, type) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], x, y; // Handle special case at beginning / end of curve // PORT: Change in Sg too, so 0.000000000001 won't be // required anymore if (t == 0 || t == 1) { switch (type) { case 0: // point x = t == 0 ? p1x : p2x; y = t == 0 ? p1y : p2y; break; case 1: // tangent case 2: // normal var px, py; if (t == 0) { if (c1x == p1x && c1y == p1y) { // handle1 = 0 if (c2x == p2x && c2y == p2y) { // handle2 = 0 px = p2x; py = p2y; // p2 } else { px = c2x; py = c2y; // c2 } } else { px = c1x; py = c1y; // handle1 } x = px - p1x; y = py - p1y; } else { if (c2x == p2x && c2y == p2y) { // handle2 = 0 if (c1x == p1x && c1y == p1y) { // handle1 = 0 px = p1x; py = p1y; // p1 } else { px = c1x; py = c1y; // c1 } } else { // handle2 px = c2x; py = c2y; } x = p2x - px; y = p2y - py; } break; } } else { // Calculate the polynomial coefficients. var cx = 3 * (c1x - p1x), bx = 3 * (c2x - c1x) - cx, ax = p2x - p1x - cx - bx, cy = 3 * (c1y - p1y), by = 3 * (c2y - c1y) - cy, ay = p2y - p1y - cy - by; switch (type) { case 0: // point // Calculate the curve point at parameter value t x = ((ax * t + bx) * t + cx) * t + p1x; y = ((ay * t + by) * t + cy) * t + p1y; break; case 1: // tangent case 2: // normal // Simply use the derivation of the bezier function for both // the x and y coordinates: x = (3 * ax * t + 2 * bx) * t + cx; y = (3 * ay * t + 2 * by) * t + cy; break; } } // The normal is simply the rotated tangent: // TODO: Rotate normals the other way in Scriptographer too? // (Depending on orientation, I guess?) return type == 2 ? new Point(y, -x) : new Point(x, y); }, subdivide: function(v, t) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7]; if (t === undefined) t = 0.5; // Triangle computation, with loops unrolled. var u = 1 - t, // Interpolate from 4 to 3 points p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y, p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y, p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y, // Interpolate from 3 to 2 points p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y, p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y, // Interpolate from 2 points to 1 point p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y; // We now have all the values we need to build the subcurves: return [ [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right ]; }, // Converts from the point coordinates (p1, c1, c2, p2) for one axis to // the polynomial coefficients and solves the polynomial for val solveCubic: function (v, coord, val) { var p1 = v[coord], c1 = v[coord + 2], c2 = v[coord + 4], p2 = v[coord + 6], c = 3 * (c1 - p1), b = 3 * (c2 - c1) - c, a = p2 - p1 - c - b; return Numerical.solveCubic(a, b, c, p1 - val, Numerical.TOLERANCE); }, getParameter: function(v, x, y) { var txs = Curve.solveCubic(v, 0, x), tys = Curve.solveCubic(v, 1, y), sx = txs === Infinity ? -1 : txs.length, sy = tys === Infinity ? -1 : tys.length, tx, ty; // sx, sy == -1 means infinite solutions: // Loop through all solutions for x and match with solutions for y, // to see if we either have a matching pair, or infinite solutions // for one or the other. for (var cx = 0; sx == -1 || cx < sx;) { if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) { for (var cy = 0; sy == -1 || cy < sy;) { if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) { // Handle infinite solutions by assigning root of // the other polynomial if (sx == -1) tx = ty; else if (sy == -1) ty = tx; // Use average if we're within tolerance if (Math.abs(tx - ty) < Numerical.TOLERANCE) return (tx + ty) * 0.5; } } // Avoid endless loops here: If sx is infinite and there was // no fitting ty, there's no solution for this bezier if (sx == -1) break; } } return null; }, // TODO: Find better name getPart: function(v, from, to) { if (from > 0) v = Curve.subdivide(v, from)[1]; // [1] right // Interpolate the parameter at 'to' in the new curve and // cut there. if (to < 1) v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left return v; }, isFlatEnough: function(v) { // Code from Nearest Point-on-Curve Problem and by Philip J. // Schneider from "Graphics Gems", Academic Press, 1990, adapted // and optimised for cubic bezier curves. // Derive the implicit equation for line connecting first and last // control points var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], a = p1y - p2y, b = p2x - p1x, c = p1x * p2y - p2x * p1y, // Find the largest distance from each of the points to the line v1 = a * c1x + b * c1y + c, v2 = a * c2x + b * c2y + c; // Compute intercepts of bounding box return Math.abs((v1 * v1 + v2 * v2) / (a * (a * a + b * b))) < 0.005; /* // Inspired by Skia, but to be tested: // Calculate 1/3 (m1) and 2/3 (m2) along the line between start (p1) // and end (p2), measure distance from there the control points and // see if they are further away than 1/2. // Seems all very inaccurate, especially since the distance // measurement is just the bigger one of x / y... // TODO: Find a more accurate and still fast way to determine this. var vx = (p2x - p1x) / 3, vy = (p2y - p1y) / 3, m1x = p1x + vx, m1y = p1y + vy, m2x = p2x - vx, m2y = p2y - vy; return Math.max( Math.abs(m1x - c1x), Math.abs(m1y - c1y), Math.abs(m2x - c1x), Math.abs(m1y - c1y)) < 1 / 2; */ /* // Thanks to Kaspar Fischer for the following: // http://www.inf.ethz.ch/personal/fischerk/pubs/bez.pdf var ux = 3 * c1x - 2 * p1x - p2x; ux *= ux; var uy = 3 * c1y - 2 * p1y - p2y; uy *= uy; var vx = 3 * c2x - 2 * p2x - p1x; vx *= vx; var vy = 3 * c2y - 2 * p2y - p1y; vy *= vy; if (ux < vx) ux = vx; if (uy < vy) uy = vy; // Tolerance is 16 * tol ^ 2 return ux + uy <= 16 * Numerical.TOLERNACE * Numerical.TOLERNACE; */ } } }, new function() { // Scope for methods that require numerical integration function getLengthIntegrand(v) { // Calculate the coefficients of a Bezier derivative. var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), bx = 6 * (p1x + c2x) - 12 * c1x, cx = 3 * (c1x - p1x), ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), by = 6 * (p1y + c2y) - 12 * c1y, cy = 3 * (c1y - p1y); return function(t) { // Calculate quadratic equations of derivatives for x and y var dx = (ax * t + bx) * t + cx, dy = (ay * t + by) * t + cy; return Math.sqrt(dx * dx + dy * dy); }; } // Amount of integral evaluations for the interval 0 <= a < b <= 1 function getIterations(a, b) { // Guess required precision based and size of range... // TODO: There should be much better educated guesses for // this. Also, what does this depend on? Required precision? return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32))); } return { statics: true, getLength: function(v, a, b) { if (a === undefined) a = 0; if (b === undefined) b = 1; // if (p1 == c1 && p2 == c2): if (v[0] == v[2] && v[1] == v[3] && v[6] == v[4] && v[7] == v[5]) { // Straight line var dx = v[6] - v[0], // p2x - p1x dy = v[7] - v[1]; // p2y - p1y return (b - a) * Math.sqrt(dx * dx + dy * dy); } var ds = getLengthIntegrand(v); return Numerical.integrate(ds, a, b, getIterations(a, b)); }, getParameterAt: function(v, offset, start) { if (offset == 0) return start; // See if we're going forward or backward, and handle cases // differently var forward = offset > 0, a = forward ? start : 0, b = forward ? 1 : start, offset = Math.abs(offset), // Use integrand to calculate both range length and part // lengths in f(t) below. ds = getLengthIntegrand(v), // Get length of total range rangeLength = Numerical.integrate(ds, a, b, getIterations(a, b)); if (offset >= rangeLength) return forward ? b : a; // Use offset / rangeLength for an initial guess for t, to // bring us closer: var guess = offset / rangeLength, length = 0; // Iteratively calculate curve range lengths, and add them up, // using integration precision depending on the size of the // range. This is much faster and also more precise than not // modifing start and calculating total length each time. function f(t) { var count = getIterations(start, t); length += start < t ? Numerical.integrate(ds, start, t, count) : -Numerical.integrate(ds, t, start, count); start = t; return length - offset; } return Numerical.findRoot(f, ds, forward ? a + guess : b - guess, // Initial guess for x a, b, 16, Numerical.TOLERANCE); } }; }, new function() { // Scope for nearest point on curve problem // Solving the Nearest Point-on-Curve Problem and A Bezier-Based Root-Finder // by Philip J. Schneider from "Graphics Gems", Academic Press, 1990 // Optimised for Paper.js var maxDepth = 32, epsilon = Math.pow(2, -maxDepth - 1); var zCubic = [ [1.0, 0.6, 0.3, 0.1], [0.4, 0.6, 0.6, 0.4], [0.1, 0.3, 0.6, 1.0] ]; var xAxis = new Line(new Point(0, 0), new Point(1, 0)); /** * Given a point and a Bezier curve, generate a 5th-degree Bezier-format * equation whose solution finds the point on the curve nearest the * user-defined point. */ function toBezierForm(v, point) { var n = 3, // degree of B(t) degree = 5, // degree of B(t) . P c = [], d = [], cd = [], w = []; for(var i = 0; i <= n; i++) { // Determine the c's -- these are vectors created by subtracting // point point from each of the control points c[i] = v[i].subtract(point); // Determine the d's -- these are vectors created by subtracting // each control point from the next if (i < n) d[i] = v[i + 1].subtract(v[i]).multiply(n); } // Create the c,d table -- this is a table of dot products of the // c's and d's for (var row = 0; row < n; row++) { cd[row] = []; for (var column = 0; column <= n; column++) cd[row][column] = d[row].dot(c[column]); } // Now, apply the z's to the dot products, on the skew diagonal // Also, set up the x-values, making these "points" for (var i = 0; i <= degree; i++) w[i] = new Point(i / degree, 0); for (k = 0; k <= degree; k++) { var lb = Math.max(0, k - n + 1), ub = Math.min(k, n); for (var i = lb; i <= ub; i++) { var j = k - i; w[k].y += cd[j][i] * zCubic[j][i]; } } return w; } /** * Given a 5th-degree equation in Bernstein-Bezier form, find all of the * roots in the interval [0, 1]. Return the number of roots found. */ function findRoots(w, depth) { switch (countCrossings(w)) { case 0: // No solutions here return []; case 1: // Unique solution // Stop recursion when the tree is deep enough // if deep enough, return 1 solution at midpoint if (depth >= maxDepth) return [0.5 * (w[0].x + w[5].x)]; // Compute intersection of chord from first control point to last // with x-axis. if (isFlatEnough(w)) return [xAxis.intersect(new Line(w[0], w[5], true)).x]; } // Otherwise, solve recursively after // subdividing control polygon var p = [[]], left = [], right = []; for (var j = 0; j <= 5; j++) p[0][j] = new Point(w[j]); // Triangle computation for (var i = 1; i <= 5; i++) { p[i] = []; for (var j = 0 ; j <= 5 - i; j++) p[i][j] = p[i - 1][j].add(p[i - 1][j + 1]).multiply(0.5); } for (var j = 0; j <= 5; j++) { left[j] = p[j][0]; right[j] = p[5 - j][j]; } return findRoots(left, depth + 1).concat(findRoots(right, depth + 1)); } /** * Count the number of times a Bezier control polygon crosses the x-axis. * This number is >= the number of roots. */ function countCrossings(v) { var crossings = 0, prevSign = null; for (var i = 0, l = v.length; i < l; i++) { var sign = v[i].y < 0 ? -1 : 1; if (prevSign != null && sign != prevSign) crossings++; prevSign = sign; } return crossings; } /** * Check if the control polygon of a Bezier curve is flat enough for * recursive subdivision to bottom out. */ function isFlatEnough(v) { // Find the perpendicular distance from each interior control point to // line connecting v[0] and v[degree] // Derive the implicit equation for line connecting first // and last control points var n = v.length - 1, a = v[0].y - v[n].y, b = v[n].x - v[0].x, c = v[0].x * v[n].y - v[n].x * v[0].y, maxAbove = 0, maxBelow = 0; // Find the largest distance for (var i = 1; i < n; i++) { // Compute distance from each of the points to that line var val = a * v[i].x + b * v[i].y + c, dist = val * val; if (val < 0 && dist > maxBelow) { maxBelow = dist; } else if (dist > maxAbove) { maxAbove = dist; } } // Compute intercepts of bounding box return Math.abs((maxAbove + maxBelow) / (2 * a * (a * a + b * b))) < epsilon; } return { getNearestLocation: function(point, matrix) { var w = toBezierForm(this.getPoints(matrix), point); // Also look at beginning and end of curve (t = 0 / 1) var roots = findRoots(w, 0).concat([0, 1]); var minDist = Infinity, minPoint, minRoot; // There are always roots, since we add [0, 1] above. for (var i = 0; i < roots.length; i++) { var pt = this.getPoint(roots[i]), dist = point.getDistance(pt); if (dist < minDist) { minDist = dist; minRoot = roots[i]; minPoint = pt; } } return new CurveLocation(this, minRoot, minPoint, minDist); }, getNearestPoint: function(point, matrix) { return this.getNearestLocation(point, matrix).getPoint(); } }; });