/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Distributed under the MIT license. See LICENSE file for details. * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * All rights reserved. */ // An Algorithm for Automatically Fitting Digitized Curves // by Philip J. Schneider // from "Graphics Gems", Academic Press, 1990 var PathFitter = Base.extend({ initialize: function(path, error) { //console.log(path.segments + ''); this.maxIterations = 4; this.points = []; var segments = path._segments; for (var i = 0, l = segments.length; i < l; i++) this.points[i] = segments[i].point.clone(); this.error = error; this.iterationError = error * error; }, process: function() { this.segments = [new Segment(this.points[0])]; this.fitCubic(0, this.points.length - 1, // Left Tangent this.points[1].subtract(this.points[0]).normalize(), // Right Tangent this.points[this.points.length - 2].subtract( this.points[this.points.length - 1]).normalize()); return this.segments; }, // Fit a Bezier curve to a (sub)set of digitized points fitCubic: function(first, last, tHat1, tHat2) { // Use heuristic if region only has two points in it if (last - first == 1) { var pt1 = this.points[first], pt2 = this.points[last], dist = pt1.getDistance(pt2) / 3; this.addCurve([pt1, pt1.add(tHat1.normalize(dist)), pt2.add(tHat2.normalize(dist)), pt2]); return; } // Parameterize points, and attempt to fit curve var uPrime = this.chordLengthParameterize(first, last), prevMaxError = this.iterationError, error, split; for (var i = 0; i < this.maxIterations; i++) { var bezCurve = this.generateBezier(first, last, uPrime, tHat1, tHat2); // Find max deviation of points to fitted curve var max = this.findMaxError(first, last, bezCurve, uPrime); if (max.error < this.error) { this.addCurve(bezCurve); return; } split = max.index; // If error not too large, try some reparameterization and iteration if (max.error >= this.iterationError || max.error >= prevMaxError) break; uPrime = this.reparameterize(first, last, uPrime, bezCurve); prevMaxError = max.error; } // Fitting failed -- split at max error point and fit recursively var V1 = this.points[split - 1].subtract(this.points[split]), V2 = this.points[split].subtract(this.points[split + 1]), tHatCenter = V1.add(V2).divide(2).normalize(); this.fitCubic(first, split, tHat1, tHatCenter); this.fitCubic(split, last, tHatCenter.negate(), tHat2); }, addCurve: function(bezCurve) { var prev = this.segments[this.segments.length - 1]; prev.setHandleOut(bezCurve[1].subtract(bezCurve[0])); this.segments.push( new Segment(bezCurve[3], bezCurve[2].subtract(bezCurve[3]))); }, // Use least-squares method to find Bezier control points for region. generateBezier: function(first, last, uPrime, tHat1, tHat2) { var nPts = last - first + 1, pt1 = this.points[first], pt2 = this.points[last]; var A = []; // Compute the A's for (var i = 0; i < nPts; i++) { var u = uPrime[i], t = 1 - u, b = 3 * u * t; A[i] = [ tHat1.normalize(b * t), // b1 tHat2.normalize(b * u) // b2 ]; } // Create the C and X matrices var C = [[0, 0], [0, 0]], X = [0, 0]; for (var i = 0; i < nPts; i++) { C[0][0] += A[i][0].dot(A[i][0]); C[0][1] += A[i][0].dot(A[i][1]); // C[1][0] += A[i][0].dot(A[i][1]); C[1][0] = C[0][1]; C[1][1] += A[i][1].dot(A[i][1]); var u = uPrime[i], t = 1 - u, b = 3 * u * t, tmp = this.points[first + i] .subtract(pt1.multiply(t * t * t) // b0 .add(pt1.multiply(b * t)) // b1 .add(pt2.multiply(b * u)) // b2 .add(pt2.multiply(u * u * u))); // b3 X[0] += A[i][0].dot(tmp); X[1] += A[i][1].dot(tmp); } // Compute the determinants of C and X var det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1], det_C0_X = C[0][0] * X[1] - C[1][0] * X[0], det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]; // Finally, derive alpha values var alpha_l = (det_C0_C1 == 0) ? 0.0 : det_X_C1 / det_C0_C1, alpha_r = (det_C0_C1 == 0) ? 0.0 : det_C0_X / det_C0_C1; // If alpha negative, use the Wu/Barsky heuristic (see text) // (if alpha is 0, you get coincident control points that lead to // divide by zero in any subsequent NewtonRaphsonRootFind() call. var segLength = pt2.getDistance(pt1), epsilon = Numerical.TOLERANCE * segLength; if (alpha_l < epsilon || alpha_r < epsilon) { // fall back on standard (probably inaccurate) formula, // and subdivide further if needed. alpha_l = alpha_r = segLength / 3; } // First and last control points of the Bezier curve are // positioned exactly at the first and last data points // Control points 1 and 2 are positioned an alpha distance out // on the tangent vectors, left and right, respectively return [pt1, pt1.add(tHat1.normalize(alpha_l)), pt2.add(tHat2.normalize(alpha_r)), pt2]; }, // Given set of points and their parameterization, try to find // a better parameterization. reparameterize: function(first, last, u, bezCurve) { var uPrime = []; for (var i = first; i <= last; i++) { uPrime[i - first] = this.findRoot(bezCurve, this.points[i], u[i - first]); } return uPrime; }, // Use Newton-Raphson iteration to find better root. findRoot: function(Q, P, u) { var Q1 = [], Q2 = []; // Generate control vertices for Q' for (var i = 0; i <= 2; i++) { Q1[i] = Q[i + 1].subtract(Q[i]).multiply(3); } // Generate control vertices for Q'' for (var i = 0; i <= 1; i++) { Q2[i] = Q1[i + 1].subtract(Q1[i]).multiply(2); } // Compute Q(u), Q'(u) and Q''(u) Q_u = this.evaluate(3, Q, u); Q1_u = this.evaluate(2, Q1, u); Q2_u = this.evaluate(1, Q2, u); // Compute f(u)/f'(u) var V = Q_u.subtract(P), df = Q1_u.dot(Q1_u) + V.dot(Q2_u); if (df == 0) return u; // u = u - f(u) / f'(u) return u - V.dot(Q1_u) / df; }, // Evaluate a Bezier curve at a particular parameter value evaluate: function(degree, V, t) { // Copy array var Vtemp = V.slice(); // Triangle computation for (var i = 1; i <= degree; i++) { for (var j = 0; j <= degree - i; j++) { Vtemp[j] = Vtemp[j].multiply(1 - t).add(Vtemp[j + 1].multiply(t)); } } return Vtemp[0]; }, // Assign parameter values to digitized points // using relative distances between points. chordLengthParameterize: function(first, last) { var u = [0]; for (var i = first + 1; i <= last; i++) { u[i - first] = u[i - first - 1] + this.points[i].getDistance(this.points[i - 1]); } for (var i = first + 1; i <= last; i++) { u[i - first] = u[i - first] / u[last - first]; } return u; }, // Find the maximum squared distance of digitized points // to fitted curve. findMaxError: function(first, last, bezCurve, u) { var index = Math.floor((last - first + 1) / 2), maxDist = 0; for (var i = first + 1; i < last; i++) { var P = this.evaluate(3, bezCurve, u[i - first]); var v = P.subtract(this.points[i]); var dist = v.x * v.x + v.y * v.y; // squared if (dist >= maxDist) { maxDist = dist; index = i; } } return { error: maxDist, index: index }; } });