/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name Path * * @class The Path item represents a path in a Paper.js project. * * @extends PathItem */ // DOCS: Explain that path matrix is always applied with each transformation. var Path = this.Path = PathItem.extend(/** @lends Path# */{ _type: 'path', /** * Creates a new Path item and places it at the top of the active layer. * * @param {Segment[]} [segments] An array of segments (or points to be * converted to segments) that will be added to the path. * * @example * // Create an empty path and add segments to it: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(30, 30)); * path.add(new Point(100, 100)); * * @example * // Create a path with two segments: * var segments = [new Point(30, 30), new Point(100, 100)]; * var path = new Path(segments); * path.strokeColor = 'black'; */ initialize: function(segments) { this.base(); this._closed = false; this._selectedSegmentState = 0; // Support both passing of segments as array or arguments // If it is an array, it can also be a description of a point, so // check its first entry for object as well this.setSegments(!segments || !Array.isArray(segments) || typeof segments[0] !== 'object' ? arguments : segments); }, clone: function() { var copy = this._clone(new Path(this._segments)); copy._closed = this._closed; if (this._clockwise !== undefined) copy._clockwise = this._clockwise; return copy; }, _changed: function(flags) { // Don't use base() for reasons of performance. Item.prototype._changed.call(this, flags); if (flags & /*#=*/ ChangeFlag.GEOMETRY) { delete this._length; // Clockwise state becomes undefined as soon as geometry changes. delete this._clockwise; // Curves are no longer valid if (this._curves != null) { for (var i = 0, l = this._curves.length; i < l; i++) { this._curves[i]._changed(/*#=*/ Change.GEOMETRY); } } } else if (flags & /*#=*/ ChangeFlag.STROKE) { // TODO: We could preserve the purely geometric bounds that are not // affected by stroke: _bounds.bounds and _bounds.handleBounds delete this._bounds; } }, /** * The segments contained within the path. * * @type Segment[] * @bean */ getSegments: function() { return this._segments; }, setSegments: function(segments) { if (!this._segments) { this._segments = []; } else { this._selectedSegmentState = 0; this._segments.length = 0; // Make sure new curves are calculated next time we call getCurves() if (this._curves) delete this._curves; } this._add(Segment.readAll(segments)); }, /** * The first Segment contained within the path. * * @type Segment * @bean */ getFirstSegment: function() { return this._segments[0]; }, /** * The last Segment contained within the path. * * @type Segment * @bean */ getLastSegment: function() { return this._segments[this._segments.length - 1]; }, /** * The curves contained within the path. * * @type Curve[] * @bean */ getCurves: function(/* includeFill */) { var curves = this._curves, segments = this._segments; if (!curves) { var length = segments.length; // Reduce length by one if it's an open path: if (!this._closed && length > 0) length--; this._curves = curves = new Array(length); for (var i = 0; i < length; i++) curves[i] = Curve.create(this, segments[i], // Use first segment for segment2 of closing curve segments[i + 1] || segments[0]); } // If we're asked to include the closing curve for fill, even if the // path is not closed for stroke, create a new uncached array and add // the closing curve. Used in Path#contains() if (arguments[0] && !this._closed && this._style._fillColor) { curves = curves.concat([ Curve.create(this, segments[segments.length - 1], segments[0]) ]); } return curves; }, /** * The first Curve contained within the path. * * @type Curve * @bean */ getFirstCurve: function() { return this.getCurves()[0]; }, /** * The last Curve contained within the path. * * @type Curve * @bean */ getLastCurve: function() { var curves = this.getCurves(); return curves[curves.length - 1]; }, /** * Specifies whether the path is closed. If it is closed, Paper.js connects * the first and last segments. * * @type Boolean * @bean * * @example {@paperscript} * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(100, 25)); * myPath.add(new Point(150, 75)); * * // Close the path: * myPath.closed = true; */ isClosed: function() { return this._closed; }, setClosed: function(closed) { // On-the-fly conversion to boolean: if (this._closed != (closed = !!closed)) { this._closed = closed; // Update _curves length if (this._curves) { var length = this._segments.length, i; // Reduce length by one if it's an open path: if (!closed && length > 0) length--; this._curves.length = length; // If we were closing this path, we need to add a new curve now if (closed) this._curves[i = length - 1] = Curve.create(this, this._segments[i], this._segments[0]); } this._changed(/*#=*/ Change.GEOMETRY); } }, // TODO: Consider adding getSubPath(a, b), returning a part of the current // path, with the added benefit that b can be < a, and closed looping is // taken into account. // DOCS: Explain that path matrix is always applied with each transformation. transform: function(matrix) { return this.base(matrix, true); }, getMatrix: function() { // Override matrix getter to always return null, since Paths act as if // they do not have a matrix, and always directly apply transformations // to their segment points. return null; }, setMatrix: function(matrix) { // Do nothing for the same reason as above. }, isEmpty: function() { return this._segments.length === 0; }, isPolygon: function() { for (var i = 0, l = this._segments.length; i < l; i++) { if (!this._segments[i].isLinear()) return false; } return true; }, _apply: function(matrix) { var coords = new Array(6); for (var i = 0, l = this._segments.length; i < l; i++) { this._segments[i]._transformCoordinates(matrix, coords, true); } // See #draw() for an explanation of why we can access _style properties // directly here: var style = this._style, fillColor = style._fillColor, strokeColor = style._strokeColor; // Try calling transform on colors in case they are GradientColors. if (fillColor && fillColor.transform) fillColor.transform(matrix); if (strokeColor && strokeColor.transform) strokeColor.transform(matrix); return true; }, /** * Private method that adds a segment to the segment list. It assumes that * the passed object is a segment already and does not perform any checks. * If a curves list was requested, it will kept in sync with the segments * list automatically. */ _add: function(segs, index) { // Local short-cuts: var segments = this._segments, curves = this._curves, amount = segs.length, append = index == null, index = append ? segments.length : index, fullySelected = this.isFullySelected(); // Scan through segments to add first, convert if necessary and set // _path and _index references on them. for (var i = 0; i < amount; i++) { var segment = segs[i]; // If the segments belong to another path already, clone them before // adding: if (segment._path) { segment = segs[i] = new Segment(segment); } segment._path = this; segment._index = index + i; // Select newly added segments if path was fully selected before if (fullySelected) segment._selectionState = /*#=*/ SelectionState.POINT; // If parts of this segment are selected, adjust the internal // _selectedSegmentState now if (segment._selectionState) this._updateSelection(segment, 0, segment._selectionState); } if (append) { // Append them all at the end by using push segments.push.apply(segments, segs); } else { // Insert somewhere else segments.splice.apply(segments, [index, 0].concat(segs)); // Adjust the indices of the segments above. for (var i = index + amount, l = segments.length; i < l; i++) { segments[i]._index = i; } } // Keep the curves list in sync all the time in case it as requested // already. We need to step one index down from the inserted segment to // get its curve: if (curves && --index >= 0) { // Insert a new curve as well and update the curves above curves.splice(index, 0, Curve.create(this, segments[index], segments[index + 1])); // Adjust segment1 now for the curves above the inserted one var curve = curves[index + amount]; if (curve) { curve._segment1 = segments[index + amount]; } } this._changed(/*#=*/ Change.GEOMETRY); return segs; }, // PORT: Add support for adding multiple segments at once to Scriptographer // DOCS: find a way to document the variable segment parameters of Path#add /** * Adds one or more segments to the end of the {@link #segments} array of * this path. * * @param {Segment|Point} segment the segment or point to be added. * @return {Segment} the added segment. This is not necessarily the same * object, e.g. if the segment to be added already belongs to another path. * @operator none * * @example {@paperscript} * // Adding segments to a path using point objects: * var path = new Path(); * path.strokeColor = 'black'; * * // Add a segment at {x: 30, y: 75} * path.add(new Point(30, 75)); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add(new Point(100, 20), new Point(170, 75)); * * @example {@paperscript} * // Adding segments to a path using arrays containing number pairs: * var path = new Path(); * path.strokeColor = 'black'; * * // Add a segment at {x: 30, y: 75} * path.add([30, 75]); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add([100, 20], [170, 75]); * * @example {@paperscript} * // Adding segments to a path using objects: * var path = new Path(); * path.strokeColor = 'black'; * * // Add a segment at {x: 30, y: 75} * path.add({x: 30, y: 75}); * * // Add two segments in one go at {x: 100, y: 20} * // and {x: 170, y: 75}: * path.add({x: 100, y: 20}, {x: 170, y: 75}); * * @example {@paperscript} * // Adding a segment with handles to a path: * var path = new Path(); * path.strokeColor = 'black'; * * path.add(new Point(30, 75)); * * // Add a segment with handles: * var point = new Point(100, 20); * var handleIn = new Point(-50, 0); * var handleOut = new Point(50, 0); * var added = path.add(new Segment(point, handleIn, handleOut)); * * // Select the added segment, so we can see its handles: * added.selected = true; * * path.add(new Point(170, 75)); */ add: function(segment1 /*, segment2, ... */) { return arguments.length > 1 && typeof segment1 !== 'number' // addSegments ? this._add(Segment.readAll(arguments)) // addSegment : this._add([ Segment.read(arguments) ])[0]; }, // PORT: Add support for adding multiple segments at once to Scriptographer /** * Inserts one or more segments at a given index in the list of this path's * segments. * * @param {Number} index the index at which to insert the segment. * @param {Segment|Point} segment the segment or point to be inserted. * @return {Segment} the added segment. This is not necessarily the same * object, e.g. if the segment to be added already belongs to another path. * * @example {@paperscript} * // Inserting a segment: * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(150, 75)); * * // Insert a new segment into myPath at index 1: * myPath.insert(1, new Point(100, 25)); * * // Select the segment which we just inserted: * myPath.segments[1].selected = true; * * @example {@paperscript} * // Inserting multiple segments: * var myPath = new Path(); * myPath.strokeColor = 'black'; * myPath.add(new Point(50, 75)); * myPath.add(new Point(150, 75)); * * // Insert two segments into myPath at index 1: * myPath.insert(1, [80, 25], [120, 25]); * * // Select the segments which we just inserted: * myPath.segments[1].selected = true; * myPath.segments[2].selected = true; */ insert: function(index, segment1 /*, segment2, ... */) { return arguments.length > 2 && typeof segment1 !== 'number' // insertSegments ? this._add(Segment.readAll(arguments, 1), index) // insertSegment : this._add([ Segment.read(arguments, 1) ], index)[0]; }, // PORT: Add to Scriptographer addSegment: function(segment) { return this._add([ Segment.read(arguments) ])[0]; }, // PORT: Add to Scriptographer insertSegment: function(index, segment) { return this._add([ Segment.read(arguments, 1) ], index)[0]; }, // PORT: Add to Scriptographer /** * Adds an array of segments (or types that can be converted to segments) * to the end of the {@link #segments} array. * * @param {Segment[]} segments * @return {Segment[]} an array of the added segments. These segments are * not necessarily the same objects, e.g. if the segment to be added already * belongs to another path. * * @example {@paperscript} * // Adding an array of Point objects: * var path = new Path(); * path.strokeColor = 'black'; * var points = [new Point(30, 50), new Point(170, 50)]; * path.addSegments(points); * * @example {@paperscript} * // Adding an array of [x, y] arrays: * var path = new Path(); * path.strokeColor = 'black'; * var array = [[30, 75], [100, 20], [170, 75]]; * path.addSegments(array); * * @example {@paperscript} * // Adding segments from one path to another: * * var path = new Path(); * path.strokeColor = 'black'; * path.addSegments([[30, 75], [100, 20], [170, 75]]); * * var path2 = new Path(); * path2.strokeColor = 'red'; * * // Add the second and third segments of path to path2: * path2.add(path.segments[1], path.segments[2]); * * // Move path2 30pt to the right: * path2.position.x += 30; */ addSegments: function(segments) { return this._add(Segment.readAll(segments)); }, // PORT: Add to Scriptographer /** * Inserts an array of segments at a given index in the path's * {@link #segments} array. * * @param {Number} index the index at which to insert the segments. * @param {Segment[]} segments the segments to be inserted. * @return {Segment[]} an array of the added segments. These segments are * not necessarily the same objects, e.g. if the segment to be added already * belongs to another path. */ insertSegments: function(index, segments) { return this._add(Segment.readAll(segments), index); }, // PORT: Add to Scriptographer /** * Removes the segment at the specified index of the path's * {@link #segments} array. * * @param {Number} index the index of the segment to be removed * @return {Segment} the removed segment * * @example {@paperscript} * // Removing a segment from a path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle(new Point(80, 50), 35); * path.strokeColor = 'black'; * * // Remove its second segment: * path.removeSegment(1); * * // Select the path, so we can see its segments: * path.selected = true; */ removeSegment: function(index) { var segments = this.removeSegments(index, index + 1); return segments[0] || null; }, // PORT: Add to Scriptographer /** * Removes all segments from the path's {@link #segments} array. * * @name Path#removeSegments * @function * @return {Segment[]} an array containing the removed segments */ /** * Removes the segments from the specified {@code from} index to the * {@code to} index from the path's {@link #segments} array. * * @param {Number} from the beginning index, inclusive * @param {Number} [to=segments.length] the ending index, exclusive * @return {Segment[]} an array containing the removed segments * * @example {@paperscript} * // Removing segments from a path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle(new Point(80, 50), 35); * path.strokeColor = 'black'; * * // Remove the segments from index 1 till index 2: * path.removeSegments(1, 2); * * // Select the path, so we can see its segments: * path.selected = true; */ removeSegments: function(from, to) { from = from || 0; to = Base.pick(to, this._segments.length); var segments = this._segments, curves = this._curves, last = to >= segments.length, removed = segments.splice(from, to - from), amount = removed.length; if (!amount) return removed; // Update selection state accordingly for (var i = 0; i < amount; i++) { var segment = removed[i]; if (segment._selectionState) this._updateSelection(segment, segment._selectionState, 0); // Clear the indices and path references of the removed segments removed._index = removed._path = undefined; } // Adjust the indices of the segments above. for (var i = from, l = segments.length; i < l; i++) segments[i]._index = i; // Keep curves in sync if (curves) { // If we're removing the last segment of a closing path, remove the // last curve. curves.splice(from == curves.length ? from - 1 : from, amount); // Adjust segments for the curves before and after the removed ones var curve; if (curve = curves[from - 1]) curve._segment2 = segments[from]; if (curve = curves[from]) curve._segment1 = segments[from]; // If the last segment of a closing path was removed, we need to // readjust the last curve of the list now. if (last && this._closed && (curve = curves[curves.length - 1])) curve._segment2 = segments[0]; } this._changed(/*#=*/ Change.GEOMETRY); return removed; }, /** * Specifies whether an path is selected and will also return {@code true} * if the path is partially selected, i.e. one or more of its segments is * selected. * * Paper.js draws the visual outlines of selected items on top of your * project. This can be useful for debugging, as it allows you to see the * construction of paths, position of path curves, individual segment points * and bounding boxes of symbol and raster items. * * @type Boolean * @bean * @see Project#selectedItems * @see Segment#selected * @see Point#selected * * @example {@paperscript} * // Selecting an item: * var path = new Path.Circle(new Size(80, 50), 35); * path.selected = true; // Select the path * * @example {@paperscript} * // A path is selected, if one or more of its segments is selected: * var path = new Path.Circle(new Size(80, 50), 35); * * // Select the second segment of the path: * path.segments[1].selected = true; * * // If the path is selected (which it is), set its fill color to red: * if (path.selected) { * path.fillColor = 'red'; * } * */ /** * Specifies whether the path and all its segments are selected. * * @type Boolean * @bean * * @example {@paperscript} * // A path is fully selected, if all of its segments are selected: * var path = new Path.Circle(new Size(80, 50), 35); * path.fullySelected = true; * * var path2 = new Path.Circle(new Size(180, 50), 35); * path2.fullySelected = true; * * // Deselect the second segment of the second path: * path2.segments[1].selected = false; * * // If the path is fully selected (which it is), * // set its fill color to red: * if (path.fullySelected) { * path.fillColor = 'red'; * } * * // If the second path is fully selected (which it isn't, since we just * // deselected its second segment), * // set its fill color to red: * if (path2.fullySelected) { * path2.fillColor = 'red'; * } */ isFullySelected: function() { return this._selected && this._selectedSegmentState == this._segments.length * /*#=*/ SelectionState.POINT; }, setFullySelected: function(selected) { var length = this._segments.length; this._selectedSegmentState = selected ? length * /*#=*/ SelectionState.POINT : 0; for (var i = 0; i < length; i++) this._segments[i]._selectionState = selected ? /*#=*/ SelectionState.POINT : 0; // No need to pass true for noChildren since Path has none anyway. this.setSelected(selected); }, _updateSelection: function(segment, oldState, newState) { segment._selectionState = newState; var total = this._selectedSegmentState += newState - oldState; // Set this path as selected in case we have selected segments. Do not // unselect if we're down to 0, as the path itself can still remain // selected even when empty. if (total > 0) this.setSelected(true); }, /** * Converts the curves in a path to straight lines with an even distribution * of points. The distance between the produced segments is as close as * possible to the value specified by the {@code maxDistance} parameter. * * @param {Number} maxDistance the maximum distance between the points * * @example {@paperscript} * // Flattening a circle shaped path: * * // Create a circle shaped path at { x: 80, y: 50 } * // with a radius of 35: * var path = new Path.Circle(new Size(80, 50), 35); * * // Select the path, so we can inspect its segments: * path.selected = true; * * // Create a copy of the path and move it 150 points to the right: * var copy = path.clone(); * copy.position.x += 150; * * // Convert its curves to points, with a max distance of 20: * copy.flatten(20); * * // Select the copy, so we can inspect its segments: * copy.selected = true; */ flatten: function(maxDistance) { var flattener = new PathFlattener(this), pos = 0, // Adapt step = maxDistance so the points distribute evenly. step = flattener.length / Math.ceil(flattener.length / maxDistance), // Add/remove half of step to end, so imprecisions are ok too. // For closed paths, remove it, because we don't want to add last // segment again end = flattener.length + (this._closed ? -step : step) / 2; // Iterate over path and evaluate and add points at given offsets var segments = []; while (pos <= end) { segments.push(new Segment(flattener.evaluate(pos, 0))); pos += step; } this.setSegments(segments); }, /** * Smooths a path by simplifying it. The {@link Path#segments} array is * analyzed and replaced by a more optimal set of segments, reducing memory * usage and speeding up drawing. * * @param {Number} [tolerance=2.5] * * @example {@paperscript height=300} * // Click and drag below to draw to draw a line, when you release the * // mouse, the is made smooth using path.simplify(): * * var path; * function onMouseDown(event) { * // If we already made a path before, deselect it: * if (path) { * path.selected = false; * } * * // Create a new path and add the position of the mouse * // as its first segment. Select it, so we can see the * // segment points: * path = new Path(); * path.strokeColor = 'black'; * path.add(event.point); * path.selected = true; * } * * function onMouseDrag(event) { * // On every drag event, add a segment to the path * // at the position of the mouse: * path.add(event.point); * } * * function onMouseUp(event) { * // When the mouse is released, simplify the path: * path.simplify(); * path.selected = true; * } */ simplify: function(tolerance) { if (this._segments.length > 2) { var fitter = new PathFitter(this, tolerance || 2.5); this.setSegments(fitter.fit()); } }, // TODO: reduceSegments([flatness]) // TODO: split(offset) / split(location) / split(index[, parameter]) /** * Specifies whether the path is oriented clock-wise. * * @type Boolean * @bean */ isClockwise: function() { if (this._clockwise !== undefined) return this._clockwise; var sum = 0, xPre, yPre; function edge(x, y) { if (xPre !== undefined) sum += (xPre - x) * (y + yPre); xPre = x; yPre = y; } // Method derived from: // http://stackoverflow.com/questions/1165647 // We treat the curve points and handles as the outline of a polygon of // which we determine the orientation using the method of calculating // the sum over the edges. This will work even with non-convex polygons, // telling you whether it's mostly clockwise for (var i = 0, l = this._segments.length; i < l; i++) { var seg1 = this._segments[i], seg2 = this._segments[i + 1 < l ? i + 1 : 0], point1 = seg1._point, handle1 = seg1._handleOut, handle2 = seg2._handleIn, point2 = seg2._point; edge(point1._x, point1._y); edge(point1._x + handle1._x, point1._y + handle1._y); edge(point2._x + handle2._x, point2._y + handle2._y); edge(point2._x, point2._y); } return sum > 0; }, setClockwise: function(clockwise) { // On-the-fly conversion to boolean: if (this.isClockwise() != (clockwise = !!clockwise)) { // Only revers the path if its clockwise orientation is not the same // as what it is now demanded to be. this.reverse(); } // Reverse only flips _clockwise state if it was already set, so let's // always set this here now. this._clockwise = clockwise; }, /** * Reverses the segments of the path. */ reverse: function() { this._segments.reverse(); // Reverse the handles: for (var i = 0, l = this._segments.length; i < l; i++) { var segment = this._segments[i]; var handleIn = segment._handleIn; segment._handleIn = segment._handleOut; segment._handleOut = handleIn; segment._index = i; } // Flip clockwise state if it's defined if (this._clockwise !== undefined) this._clockwise = !this._clockwise; }, // DOCS: document Path#join in more detail. /** * Joins the path with the specified path, which will be removed in the * process. * * @param {Path} path * * @example {@paperscript} * // Joining two paths: * var path = new Path([30, 25], [30, 75]); * path.strokeColor = 'black'; * * var path2 = new Path([200, 25], [200, 75]); * path2.strokeColor = 'black'; * * // Join the paths: * path.join(path2); * * @example {@paperscript} * // Joining two paths that share a point at the start or end of their * // segments array: * var path = new Path([30, 25], [30, 75]); * path.strokeColor = 'black'; * * var path2 = new Path([30, 25], [80, 25]); * path2.strokeColor = 'black'; * * // Join the paths: * path.join(path2); * * // After joining, path with have 3 segments, since it * // shared its first segment point with the first * // segment point of path2. * * // Select the path to show that they have joined: * path.selected = true; * * @example {@paperscript} * // Joining two paths that connect at two points: * var path = new Path([30, 25], [80, 25], [80, 75]); * path.strokeColor = 'black'; * * var path2 = new Path([30, 25], [30, 75], [80, 75]); * path2.strokeColor = 'black'; * * // Join the paths: * path.join(path2); * * // Because the paths were joined at two points, the path is closed * // and has 4 segments. * * // Select the path to show that they have joined: * path.selected = true; */ join: function(path) { if (path) { var segments = path._segments, last1 = this.getLastSegment(), last2 = path.getLastSegment(); if (last1._point.equals(last2._point)) path.reverse(); var first2 = path.getFirstSegment(); if (last1._point.equals(first2._point)) { last1.setHandleOut(first2._handleOut); this._add(segments.slice(1)); } else { var first1 = this.getFirstSegment(); if (first1._point.equals(first2._point)) path.reverse(); last2 = path.getLastSegment(); if (first1._point.equals(last2._point)) { first1.setHandleIn(last2._handleIn); // Prepend all segments from path except the last one this._add(segments.slice(0, segments.length - 1), 0); } else { this._add(segments.slice(0)); } } path.remove(); // Close if they touch in both places var first1 = this.getFirstSegment(); last1 = this.getLastSegment(); if (last1._point.equals(first1._point)) { first1.setHandleIn(last1._handleIn); last1.remove(); this.setClosed(true); } this._changed(/*#=*/ Change.GEOMETRY); return true; } return false; }, /** * For simple paths, reduce always returns the path itself. See * {@link CompoundPath#reduce()} for more explanations. */ reduce: function() { return this; }, /** * The length of the perimeter of the path. * * @type Number * @bean */ getLength: function() { if (this._length == null) { var curves = this.getCurves(); this._length = 0; for (var i = 0, l = curves.length; i < l; i++) this._length += curves[i].getLength(); } return this._length; }, _getOffset: function(location) { var index = location && location.getIndex(); if (index != null) { var curves = this.getCurves(), offset = 0; for (var i = 0; i < index; i++) offset += curves[i].getLength(); var curve = curves[index]; return offset + curve.getLength(0, location.getParameter()); } return null; }, getLocation: function(point) { var curves = this.getCurves(); for (var i = 0, l = curves.length; i < l; i++) { var curve = curves[i]; var t = curve.getParameter(point); if (t != null) return new CurveLocation(curve, t); } return null; }, // PORT: Rename functions and add new isParameter argument in Scriptographer // DOCS: document Path#getLocationAt /** * {@grouptitle Positions on Paths and Curves} * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {CurveLocation} */ getLocationAt: function(offset, isParameter) { var curves = this.getCurves(), length = 0; if (isParameter) { // offset consists of curve index and curve parameter, before and // after the fractional digit. var index = ~~offset; // = Math.floor() return new CurveLocation(curves[index], offset - index); } for (var i = 0, l = curves.length; i < l; i++) { var start = length, curve = curves[i]; length += curve.getLength(); if (length >= offset) { // Found the segment within which the length lies return new CurveLocation(curve, curve.getParameterAt(offset - start)); } } // It may be that through impreciseness of getLength, that the end // of the curves was missed: if (offset <= this.getLength()) return new CurveLocation(curves[curves.length - 1], 1); return null; }, /** * Get the point on the path at the given offset. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the point at the given offset * * @example {@paperscript height=150} * // Finding the point on a path at a given offset: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Create a small circle shaped path at the point: * var circle = new Path.Circle(point, 3); * circle.fillColor = 'red'; * * @example {@paperscript height=150} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 5; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Create a small circle shaped path at the point: * var circle = new Path.Circle(point, 3); * circle.fillColor = 'red'; * } */ getPointAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getPoint(); }, /** * Get the tangent to the path at the given offset as a vector * point. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the tangent vector at the given offset * * @example {@paperscript height=150} * // Working with the tangent vector at a given offset: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Find the tangent vector at the given offset: * var tangent = path.getTangentAt(offset); * * // Make the tangent vector 60pt long: * tangent.length = 60; * * var path = new Path(); * path.strokeColor = 'red'; * path.add(point); * path.add(point + tangent); * * @example {@paperscript height=200} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 6; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Find the normal vector on the path at the given offset: * var tangent = path.getTangentAt(offset); * * // Make the tangent vector 60pt long: * tangent.length = 60; * * var line = new Path(); * line.strokeColor = 'red'; * line.add(point); * line.add(point + tangent); * } */ getTangentAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getTangent(); }, /** * Get the normal to the path at the given offset as a vector point. * * @param {Number} offset * @param {Boolean} [isParameter=false] * @return {Point} the normal vector at the given offset * * @example {@paperscript height=150} * // Working with the normal vector at a given offset: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * // We're going to be working with a third of the length * // of the path as the offset: * var offset = path.length / 3; * * // Find the point on the path: * var point = path.getPointAt(offset); * * // Find the normal vector at the given offset: * var normal = path.getNormalAt(offset); * * // Make the normal vector 30pt long: * normal.length = 30; * * var path = new Path(); * path.strokeColor = 'red'; * path.add(point); * path.add(point + normal); * * @example {@paperscript height=200} * // Iterating over the length of a path: * * // Create an arc shaped path: * var path = new Path(); * path.strokeColor = 'black'; * path.add(new Point(40, 100)); * path.arcTo(new Point(150, 100)); * * var amount = 10; * var length = path.length; * for (var i = 0; i < amount + 1; i++) { * var offset = i / amount * length; * * // Find the point on the path at the given offset: * var point = path.getPointAt(offset); * * // Find the normal vector on the path at the given offset: * var normal = path.getNormalAt(offset); * * // Make the normal vector 30pt long: * normal.length = 30; * * var line = new Path(); * line.strokeColor = 'red'; * line.add(point); * line.add(point + normal); * } */ getNormalAt: function(offset, isParameter) { var loc = this.getLocationAt(offset, isParameter); return loc && loc.getNormal(); }, /** * Returns the nearest location on the path to the specified point. * * @name Path#getNearestLocation * @function * @param point {Point} The point for which we search the nearest location * @return {CurveLocation} The location on the path that's the closest to * the specified point */ getNearestLocation: function(point) { var curves = this.getCurves(), minDist = Infinity, minLoc = null; for (var i = 0, l = curves.length; i < l; i++) { var loc = curves[i].getNearestLocation(point); if (loc._distance < minDist) { minDist = loc._distance; minLoc = loc; } } return minLoc; }, /** * Returns the nearest point on the path to the specified point. * * @name Path#getNearestPoint * @function * @param point {Point} The point for which we search the nearest point * @return {Point} The point on the path that's the closest to the specified * point */ getNearestPoint: function(point) { return this.getNearestLocation(point).getPoint(); }, contains: function(point) { point = Point.read(arguments); // If the path is not closed, it we should not bail out in case it has // a fill color! if (!this._closed && !this._style._fillColor || !this.getRoughBounds()._containsPoint(point)) return false; // Note: This only works correctly with even-odd fill rule, or paths // that do not overlap with themselves. // TODO: Find out how to implement the "Point In Polygon" problem for // non-zero fill rule. // Use the crossing number algorithm, by counting the crossings of the // beam in right y-direction with the shape, and see if it's an odd // number, meaning the starting point is inside the shape. // http://en.wikipedia.org/wiki/Point_in_polygon var curves = this.getCurves(true), crossings = 0, // Reuse one array for root-finding, give garbage collector a break roots = []; for (var i = 0, l = curves.length; i < l; i++) crossings += curves[i].getCrossings(point, roots); return (crossings & 1) == 1; }, _hitTest: function(point, options) { // See #draw() for an explanation of why we can access _style properties // directly here: var style = this._style, tolerance = options.tolerance || 0, radius = (options.stroke && style._strokeColor ? style._strokeWidth / 2 : 0) + tolerance, loc, res; // If we're asked to query for segments, ends or handles, do all that // before stroke or fill. var coords = [], that = this; function checkPoint(seg, pt, name) { // TODO: We need to transform the point back to the coordinate // system of the DOM level on which the inquiry was started! if (point.getDistance(pt) < tolerance) return new HitResult(name, that, { segment: seg, point: pt }); } function checkSegment(seg, ends) { var point = seg._point; // Note, when checking for ends, we don't also check for handles, // since this will happen afterwards in a separate loop, see below. return (ends || options.segments) && checkPoint(seg, point, 'segment') || (!ends && options.handles) && ( checkPoint(seg, point.add(seg._handleIn), 'handle-in') || checkPoint(seg, point.add(seg._handleOut), 'handle-out')); } if (options.ends && !options.segments && !this._closed) { if (res = checkSegment(this.getFirstSegment(), true) || checkSegment(this.getLastSegment(), true)) return res; } else if (options.segments || options.handles) { for (var i = 0, l = this._segments.length; i < l; i++) { if (res = checkSegment(this._segments[i])) return res; } } // If we're querying for stroke, perform that before fill if (options.stroke && radius > 0) loc = this.getNearestLocation(point); // Don't process loc yet, as we also need to query for stroke after fill // in some cases. Simply skip fill query if we already have a matching // stroke. if (!(loc && loc._distance <= radius) && options.fill && style._fillColor && this.contains(point)) return new HitResult('fill', this); // Now query stroke if we haven't already if (!loc && options.stroke && radius > 0) loc = this.getNearestLocation(point); if (loc && loc._distance <= radius) // TODO: Do we need to transform the location back to the coordinate // system of the DOM level on which the inquiry was started? return options.stroke ? new HitResult('stroke', this, { location: loc }) : new HitResult('fill', this); } // TODO: intersects(item) // TODO: contains(item) // TODO: intersect(item) // TODO: unite(item) // TODO: exclude(item) // TODO: getIntersections(path) }, new function() { // Scope for drawing // Note that in the code below we're often accessing _x and _y on point // objects that were read from segments. This is because the SegmentPoint // class overrides the plain x / y properties with getter / setters and // stores the values in these private properties internally. To avoid // calling of getter functions all the time we directly access these private // properties here. The distinction between normal Point objects and // SegmentPoint objects maybe seem a bit tedious but is worth the benefit in // performance. function drawHandles(ctx, segments, matrix) { var coords = new Array(6); for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; segment._transformCoordinates(matrix, coords, false); var state = segment._selectionState, selected = state & /*#=*/ SelectionState.POINT, pX = coords[0], pY = coords[1]; function drawHandle(index) { var hX = coords[index], hY = coords[index + 1]; if (pX != hX || pY != hY) { ctx.beginPath(); ctx.moveTo(pX, pY); ctx.lineTo(hX, hY); ctx.stroke(); ctx.beginPath(); ctx.arc(hX, hY, 1.75, 0, Math.PI * 2, true); ctx.fill(); } } if (selected || (state & /*#=*/ SelectionState.HANDLE_IN)) drawHandle(2); if (selected || (state & /*#=*/ SelectionState.HANDLE_OUT)) drawHandle(4); // Draw a rectangle at segment.point: ctx.save(); ctx.beginPath(); ctx.rect(pX - 2, pY - 2, 4, 4); ctx.fill(); // If the point is not selected, draw a white square that is 1 px // smaller on all sides: if (!selected) { ctx.beginPath(); ctx.rect(pX - 1, pY - 1, 2, 2); ctx.fillStyle = '#ffffff'; ctx.fill(); } ctx.restore(); } } function drawSegments(ctx, path, matrix) { var segments = path._segments, length = segments.length, coords = new Array(6), first = true, curX, curY, prevX, prevY, inX, inY, outX, outY; function drawSegment(i) { var segment = segments[i]; // Optimise code when no matrix is provided by accessing semgent // points hand handles directly, since this is the default when // drawing paths. Matrix is only used for drawing selections. if (matrix) { segment._transformCoordinates(matrix, coords, false); curX = coords[0]; curY = coords[1]; } else { var point = segment._point; curX = point._x; curY = point._y; } if (first) { ctx.moveTo(curX, curY); first = false; } else { if (matrix) { inX = coords[2]; inY = coords[3]; } else { var handle = segment._handleIn; inX = curX + handle._x; inY = curY + handle._y; } if (inX == curX && inY == curY && outX == prevX && outY == prevY) { ctx.lineTo(curX, curY); } else { ctx.bezierCurveTo(outX, outY, inX, inY, curX, curY); } } prevX = curX; prevY = curY; if (matrix) { outX = coords[4]; outY = coords[5]; } else { var handle = segment._handleOut; outX = prevX + handle._x; outY = prevY + handle._y; } } for (var i = 0; i < length; i++) drawSegment(i); // Close path by drawing first segment again if (path._closed && length > 1) drawSegment(0); } return { draw: function(ctx, param) { if (!param.compound) ctx.beginPath(); // We can access styles directly on the internal _styles object, // since Path items do not have children, thus do not need style // accessors for merged styles. var style = this._style, fillColor = style._fillColor, strokeColor = style._strokeColor, dashArray = style._dashArray, hasDash = strokeColor && dashArray && dashArray.length; // Prepare the canvas path if we have any situation that requires it // to be defined. if (param.compound || this._clipMask || fillColor || strokeColor && !hasDash) { drawSegments(ctx, this); } if (this._closed) ctx.closePath(); if (this._clipMask) { ctx.clip(); } else if (!param.compound && (fillColor || strokeColor)) { // If the path is part of a compound path or doesn't have a fill // or stroke, there is no need to continue. this._setStyles(ctx); if (fillColor) ctx.fill(); if (strokeColor) { if (hasDash) { // We cannot use the path created by drawSegments above // Use CurveFlatteners to draw dashed paths: ctx.beginPath(); var flattener = new PathFlattener(this), from = style._dashOffset, to, i = 0; while (from < flattener.length) { to = from + dashArray[(i++) % dashArray.length]; flattener.drawPart(ctx, from, to); from = to + dashArray[(i++) % dashArray.length]; } } ctx.stroke(); } } }, drawSelected: function(ctx, matrix) { ctx.beginPath(); drawSegments(ctx, this, matrix); // Now stroke it and draw its handles: ctx.stroke(); drawHandles(ctx, this._segments, matrix); // If the path has no selected segments, draw its bounds too if (this._selectedSegmentState == 0) { Item.drawSelectedBounds(this.getBounds(), ctx, matrix); } } }; }, new function() { // Path Smoothing /** * Solves a tri-diagonal system for one of coordinates (x or y) of first * bezier control points. * * @param rhs right hand side vector. * @return Solution vector. */ function getFirstControlPoints(rhs) { var n = rhs.length, x = [], // Solution vector. tmp = [], // Temporary workspace. b = 2; x[0] = rhs[0] / b; // Decomposition and forward substitution. for (var i = 1; i < n; i++) { tmp[i] = 1 / b; b = (i < n - 1 ? 4 : 2) - tmp[i]; x[i] = (rhs[i] - x[i - 1]) / b; } // Back-substitution. for (var i = 1; i < n; i++) { x[n - i - 1] -= tmp[n - i] * x[n - i]; } return x; }; return { // Note: Documentation for smooth() is in PathItem smooth: function() { // This code is based on the work by Oleg V. Polikarpotchkin, // http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry // It was extended to support closed paths by averaging overlapping // beginnings and ends. The result of this approach is very close to // Polikarpotchkin's closed curve solution, but reuses the same // algorithm as for open paths, and is probably executing faster as // well, so it is preferred. var segments = this._segments, size = segments.length, n = size, // Add overlapping ends for averaging handles in closed paths overlap; if (size <= 2) return; if (this._closed) { // Overlap up to 4 points since averaging beziers affect the 4 // neighboring points overlap = Math.min(size, 4); n += Math.min(size, overlap) * 2; } else { overlap = 0; } var knots = []; for (var i = 0; i < size; i++) knots[i + overlap] = segments[i]._point; if (this._closed) { // If we're averaging, add the 4 last points again at the // beginning, and the 4 first ones at the end. for (var i = 0; i < overlap; i++) { knots[i] = segments[i + size - overlap]._point; knots[i + size + overlap] = segments[i]._point; } } else { n--; } // Calculate first Bezier control points // Right hand side vector var rhs = []; // Set right hand side X values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i]._x + 2 * knots[i + 1]._x; rhs[0] = knots[0]._x + 2 * knots[1]._x; rhs[n - 1] = 3 * knots[n - 1]._x; // Get first control points X-values var x = getFirstControlPoints(rhs); // Set right hand side Y values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i]._y + 2 * knots[i + 1]._y; rhs[0] = knots[0]._y + 2 * knots[1]._y; rhs[n - 1] = 3 * knots[n - 1]._y; // Get first control points Y-values var y = getFirstControlPoints(rhs); if (this._closed) { // Do the actual averaging simply by linearly fading between the // overlapping values. for (var i = 0, j = size; i < overlap; i++, j++) { var f1 = i / overlap, f2 = 1 - f1, ie = i + overlap, je = j + overlap; // Beginning x[j] = x[i] * f1 + x[j] * f2; y[j] = y[i] * f1 + y[j] * f2; // End x[je] = x[ie] * f2 + x[je] * f1; y[je] = y[ie] * f2 + y[je] * f1; } n--; } var handleIn = null; // Now set the calculated handles for (var i = overlap; i <= n - overlap; i++) { var segment = segments[i - overlap]; if (handleIn) segment.setHandleIn(handleIn.subtract(segment._point)); if (i < n) { segment.setHandleOut( Point.create(x[i], y[i]).subtract(segment._point)); if (i < n - 1) handleIn = Point.create( 2 * knots[i + 1]._x - x[i + 1], 2 * knots[i + 1]._y - y[i + 1]); else handleIn = Point.create( (knots[n]._x + x[n - 1]) / 2, (knots[n]._y + y[n - 1]) / 2); } } if (this._closed && handleIn) { var segment = this._segments[0]; segment.setHandleIn(handleIn.subtract(segment._point)); } } }; }, new function() { // PostScript-style drawing commands /** * Helper method that returns the current segment and checks if a moveTo() * command is required first. */ function getCurrentSegment(that) { var segments = that._segments; if (segments.length == 0) throw new Error('Use a moveTo() command first'); return segments[segments.length - 1]; } return { // Note: Documentation for these methods is found in PathItem, as they // are considered abstract methods of PathItem and need to be defined in // all implementing classes. moveTo: function(point) { // moveTo should only be called at the beginning of paths. But it // can ce called again if there is nothing drawn yet, in which case // the first segment gets readjusted. if (this._segments.length === 1) this.removeSegment(0); // Let's not be picky about calling moveTo() when not at the // beginning of a path, just bail out: if (!this._segments.length) this._add([ new Segment(Point.read(arguments)) ]); }, moveBy: function(point) { throw new Error('moveBy() is unsupported on Path items.'); }, lineTo: function(point) { // Let's not be picky about calling moveTo() first: this._add([ new Segment(Point.read(arguments)) ]); }, cubicCurveTo: function(handle1, handle2, to) { var _handle1 = Point.read(arguments), _handle2 = Point.read(arguments), _to = Point.read(arguments); // First modify the current segment: var current = getCurrentSegment(this); // Convert to relative values: current.setHandleOut(_handle1.subtract(current._point)); // And add the new segment, with handleIn set to c2 this._add([ new Segment(_to, _handle2.subtract(to)) ]); }, quadraticCurveTo: function(handle, to) { var _handle = Point.read(arguments), to = Point.read(arguments); // This is exact: // If we have the three quad points: A E D, // and the cubic is A B C D, // B = E + 1/3 (A - E) // C = E + 1/3 (D - E) var current = getCurrentSegment(this)._point; this.cubicCurveTo( _handle.add(current.subtract(_handle).multiply(1 / 3)), _handle.add(to.subtract(_handle).multiply(1 / 3)), to ); }, curveTo: function(through, to, parameter) { var _through = Point.read(arguments), _to = Point.read(arguments), t = Base.pick(Base.readValue(arguments), 0.5), t1 = 1 - t, current = getCurrentSegment(this)._point, // handle = (through - (1 - t)^2 * current - t^2 * to) / // (2 * (1 - t) * t) handle = _through.subtract(current.multiply(t1 * t1)) .subtract(_to.multiply(t * t)).divide(2 * t * t1); if (handle.isNaN()) throw new Error( 'Cannot put a curve through points with parameter = ' + t); this.quadraticCurveTo(handle, _to); }, // PORT: New implementation back to Scriptographer arcTo: function(to, clockwise /* | through, to */) { // Get the start point: var current = getCurrentSegment(this), from = current._point, through, point = Point.read(arguments), // Peek at next value to see if it's clockwise, // with true as default value. next = Base.pick(Base.peekValue(arguments), true); if (typeof next === 'boolean') { // arcTo(to, clockwise) to = point; clockwise = next; var middle = from.add(to).divide(2), through = middle.add(middle.subtract(from).rotate( clockwise ? -90 : 90)); } else { // arcTo(through, to) through = point; to = Point.read(arguments); } // Construct the two perpendicular middle lines to (from, through) // and (through, to), and intersect them to get the center var l1 = new Line(from.add(through).divide(2), through.subtract(from).rotate(90)), l2 = new Line(through.add(to).divide(2), to.subtract(through).rotate(90)), center = l1.intersect(l2), line = new Line(from, to, true), throughSide = line.getSide(through); if (!center) { // If the two lines are colinear, there cannot be an arc as the // circle is infinitely big and has no center point. If side is // 0, the connecting arc line of this huge circle is a line // between the two points, so we can use #lineTo instead. // Otherwise we bail out: if (!throughSide) return this.lineTo(to); throw new Error("Cannot put an arc through the given points: " + [from, through, to]); } var vector = from.subtract(center), radius = vector.getLength(), extent = vector.getDirectedAngle(to.subtract(center)), centerSide = line.getSide(center); if (centerSide == 0) { // If the center is lying on the line, we might have gotten the // wrong sign for extent above. Use the sign of the side of the // through point. extent = throughSide * Math.abs(extent); } else if (throughSide == centerSide) { // If the center is on the same side of the line (from, to) as // the through point, we're extending bellow 180 degrees and // need to adapt extent. extent -= 360 * (extent < 0 ? -1 : 1); } var ext = Math.abs(extent), count = ext >= 360 ? 4 : Math.ceil(ext / 90), inc = extent / count, half = inc * Math.PI / 360, z = 4 / 3 * Math.sin(half) / (1 + Math.cos(half)), segments = []; for (var i = 0; i <= count; i++) { // Explicitely use to point for last segment, since depending // on values the calculation adds imprecision: var pt = i < count ? center.add(vector) : to; var out = i < count ? vector.rotate(90).multiply(z) : null; if (i == 0) { // Modify startSegment current.setHandleOut(out); } else { // Add new Segment segments.push( new Segment(pt, vector.rotate(-90).multiply(z), out)); } vector = vector.rotate(inc); } // Add all segments at once at the end for higher performance this._add(segments); }, lineBy: function(vector) { vector = Point.read(arguments); var current = getCurrentSegment(this); this.lineTo(current._point.add(vector)); }, curveBy: function(throughVector, toVector, parameter) { throughVector = Point.read(throughVector); toVector = Point.read(toVector); var current = getCurrentSegment(this)._point; this.curveTo(current.add(throughVector), current.add(toVector), parameter); }, arcBy: function(throughVector, toVector) { throughVector = Point.read(throughVector); toVector = Point.read(toVector); var current = getCurrentSegment(this)._point; this.arcBy(current.add(throughVector), current.add(toVector)); }, closePath: function() { this.setClosed(true); } }; }, new function() { // A dedicated scope for the tricky bounds calculations /** * Returns the bounding rectangle of the item excluding stroke width. */ function getBounds(matrix, strokePadding) { // Code ported and further optimised from: // http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html var segments = this._segments, first = segments[0]; // If there are no segments, return "empty" rectangle, just like groups, // since #bounds is assumed to never return null. if (!first) return new Rectangle(); var coords = new Array(6), prevCoords = new Array(6); // Make coordinates for first segment available in prevCoords. first._transformCoordinates(matrix, prevCoords, false); var min = prevCoords.slice(0, 2), max = min.slice(0), // clone // Add some tolerance for good roots, as t = 0 / 1 are added // seperately anyhow, and we don't want joins to be added with // radiuses in getStrokeBounds() tMin = Numerical.TOLERANCE, tMax = 1 - tMin; function processSegment(segment) { segment._transformCoordinates(matrix, coords, false); for (var i = 0; i < 2; i++) { var v0 = prevCoords[i], // prev.point v1 = prevCoords[i + 4], // prev.handleOut v2 = coords[i + 2], // segment.handleIn v3 = coords[i]; // segment.point function add(value, t) { var padding = 0; if (value == null) { // Calculate bezier polynomial at t var u = 1 - t; value = u * u * u * v0 + 3 * u * u * t * v1 + 3 * u * t * t * v2 + t * t * t * v3; // Only add strokeWidth to bounds for points which lie // within 0 < t < 1. The corner cases for cap and join // are handled in getStrokeBounds() padding = strokePadding ? strokePadding[i] : 0; } var left = value - padding, right = value + padding; if (left < min[i]) min[i] = left; if (right > max[i]) max[i] = right; } add(v3, null); // Calculate derivative of our bezier polynomial, divided by 3. // Dividing by 3 allows for simpler calculations of a, b, c and // leads to the same quadratic roots below. var a = 3 * (v1 - v2) - v0 + v3, b = 2 * (v0 + v2) - 4 * v1, c = v1 - v0; // Solve for derivative for quadratic roots. Each good root // (meaning a solution 0 < t < 1) is an extrema in the cubic // polynomial and thus a potential point defining the bounds // TODO: Use tolerance here, just like Numerical.solveQuadratic if (a == 0) { if (b == 0) continue; var t = -c / b; // Test for good root and add to bounds if good (same below) if (tMin < t && t < tMax) add(null, t); continue; } var q = b * b - 4 * a * c; if (q < 0) continue; // TODO: Match this with Numerical.solveQuadratic var sqrt = Math.sqrt(q), f = -0.5 / a, t1 = (b - sqrt) * f, t2 = (b + sqrt) * f; if (tMin < t1 && t1 < tMax) add(null, t1); if (tMin < t2 && t2 < tMax) add(null, t2); } // Swap coordinate buffers var tmp = prevCoords; prevCoords = coords; coords = tmp; } for (var i = 1, l = segments.length; i < l; i++) processSegment(segments[i]); if (this._closed) processSegment(first); return Rectangle.create(min[0], min[1], max[0] - min[0], max[1] - min[1]); } /** * Returns the horizontal and vertical padding that a transformed round * stroke adds to the bounding box, by calculating the dimensions of a * rotated ellipse. */ function getPenPadding(radius, matrix) { if (!matrix) return [radius, radius]; // If a matrix is provided, we need to rotate the stroke circle // and calculate the bounding box of the resulting rotated elipse: // Get rotated hor and ver vectors, and determine rotation angle // and elipse values from them: var mx = matrix.createShiftless(), hor = mx.transform(Point.create(radius, 0)), ver = mx.transform(Point.create(0, radius)), phi = hor.getAngleInRadians(), a = hor.getLength(), b = ver.getLength(); // Formula for rotated ellipses: // x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // Derivates (by Wolfram Alpha): // derivative of x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // dx/dt = a sin(t) cos(phi) + b cos(t) sin(phi) = 0 // derivative of y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // dy/dt = b cos(t) cos(phi) - a sin(t) sin(phi) = 0 // This can be simplified to: // tan(t) = -b * tan(phi) / a // x // tan(t) = b * cot(phi) / a // y // Solving for t gives: // t = pi * n - arctan(b * tan(phi) / a) // x // t = pi * n + arctan(b * cot(phi) / a) // = pi * n + arctan(b / tan(phi) / a) // y var sin = Math.sin(phi), cos = Math.cos(phi), tan = Math.tan(phi), tx = -Math.atan(b * tan / a), ty = Math.atan(b / (tan * a)); // Due to symetry, we don't need to cycle through pi * n solutions: return [Math.abs(a * Math.cos(tx) * cos - b * Math.sin(tx) * sin), Math.abs(b * Math.sin(ty) * cos + a * Math.cos(ty) * sin)]; } /** * Returns the bounding rectangle of the item including stroke width. */ function getStrokeBounds(matrix) { // See #draw() for an explanation of why we can access _style // properties directly here: var style = this._style; // TODO: Find a way to reuse 'bounds' cache instead? if (!style._strokeColor || !style._strokeWidth) return getBounds.call(this, matrix); var radius = style._strokeWidth / 2, padding = getPenPadding(radius, matrix), bounds = getBounds.call(this, matrix, padding), join = style._strokeJoin, cap = style._strokeCap, // miter is relative to stroke width. Divide it by 2 since we're // measuring half the distance below miter = style._miterLimit * style._strokeWidth / 2, segments = this._segments; // Create a rectangle of padding size, used for union with bounds // further down var joinBounds = new Rectangle(new Size(padding).multiply(2)); function add(point) { bounds = bounds.include(matrix ? matrix._transformPoint(point, point) : point); } function addBevelJoin(curve, t) { var point = curve.getPoint(t), normal = curve.getNormal(t).normalize(radius); add(point.add(normal)); add(point.subtract(normal)); } function addJoin(segment, join) { // When both handles are set in a segment, the join setting is // ignored and round is always used. if (join === 'round' || !segment._handleIn.isZero() && !segment._handleOut.isZero()) { bounds = bounds.unite(joinBounds.setCenter(matrix ? matrix._transformPoint(segment._point) : segment._point)); } else if (join == 'bevel') { var curve = segment.getCurve(); addBevelJoin(curve, 0); addBevelJoin(curve.getPrevious(), 1); } else if (join == 'miter') { var curve2 = segment.getCurve(), curve1 = curve2.getPrevious(), point = curve2.getPoint(0), normal1 = curve1.getNormal(1).normalize(radius), normal2 = curve2.getNormal(0).normalize(radius), // Intersect the two lines line1 = new Line(point.subtract(normal1), Point.create(-normal1.y, normal1.x)), line2 = new Line(point.subtract(normal2), Point.create(-normal2.y, normal2.x)), corner = line1.intersect(line2); // Now measure the distance from the segment to the // intersection, which his half of the miter distance if (!corner || point.getDistance(corner) > miter) { addJoin(segment, 'bevel'); } else { add(corner); } } } function addCap(segment, cap, t) { switch (cap) { case 'round': return addJoin(segment, cap); case 'butt': case 'square': // Calculate the corner points of butt and square caps var curve = segment.getCurve(), point = curve.getPoint(t), normal = curve.getNormal(t).normalize(radius); // For square caps, we need to step away from point in the // direction of the tangent, which is the rotated normal if (cap === 'square') point = point.add(normal.rotate(t == 0 ? -90 : 90)); add(point.add(normal)); add(point.subtract(normal)); break; } } for (var i = 1, l = segments.length - (this._closed ? 0 : 1); i < l; i++) addJoin(segments[i], join); if (this._closed) { addJoin(segments[0], join); } else { addCap(segments[0], cap, 0); addCap(segments[segments.length - 1], cap, 1); } return bounds; } /** * Returns the bounding rectangle of the item including handles. */ function getHandleBounds(matrix, strokePadding, joinPadding) { var coords = new Array(6), x1 = Infinity, x2 = -x1, y1 = x1, y2 = x2; strokePadding = strokePadding / 2 || 0; joinPadding = joinPadding / 2 || 0; for (var i = 0, l = this._segments.length; i < l; i++) { var segment = this._segments[i]; segment._transformCoordinates(matrix, coords, false); for (var j = 0; j < 6; j += 2) { // Use different padding for points or handles var padding = j == 0 ? joinPadding : strokePadding, x = coords[j], y = coords[j + 1], xn = x - padding, xx = x + padding, yn = y - padding, yx = y + padding; if (xn < x1) x1 = xn; if (xx > x2) x2 = xx; if (yn < y1) y1 = yn; if (yx > y2) y2 = yx; } } return Rectangle.create(x1, y1, x2 - x1, y2 - y1); } /** * Returns the rough bounding rectangle of the item that is shure to include * all of the drawing, including stroke width. */ function getRoughBounds(matrix) { // Delegate to handleBounds, but pass on radius values for stroke and // joins. Hanlde miter joins specially, by passing the largets radius // possible. var style = this._style, strokeWidth = style._strokeColor ? style._strokeWidth : 0; return getHandleBounds.call(this, matrix, strokeWidth, style._strokeJoin == 'miter' ? strokeWidth * style._miterLimit : strokeWidth); } var get = { bounds: getBounds, strokeBounds: getStrokeBounds, handleBounds: getHandleBounds, roughBounds: getRoughBounds }; return { _getBounds: function(type, matrix) { return get[type].call(this, matrix); } }; });