/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Distributed under the MIT license. See LICENSE file for details. * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * All rights reserved. */ var Numerical = new function() { var abscissa = [ -0.5773502692, 0.5773502692, -0.7745966692, 0.7745966692, 0, -0.8611363116, 0.8611363116, -0.3399810436, 0.3399810436, -0.9061798459, 0.9061798459, -0.5384693101, 0.5384693101, 0.0000000000, -0.9324695142, 0.9324695142, -0.6612093865, 0.6612093865, -0.2386191861, 0.2386191861, -0.9491079123, 0.9491079123, -0.7415311856, 0.7415311856, -0.4058451514, 0.4058451514, 0.0000000000, -0.9602898565, 0.9602898565, -0.7966664774, 0.7966664774, -0.5255324099, 0.5255324099, -0.1834346425, 0.1834346425 ], weight = [ 1, 1, 0.5555555556, 0.5555555556, 0.8888888888, 0.3478548451, 0.3478548451, 0.6521451549, 0.6521451549, 0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705, 0.5688888888, 0.1713244924, 0.1713244924, 0.3607615730, 0.3607615730, 0.4679139346, 0.4679139346, 0.1294849662, 0.1294849662, 0.2797053915, 0.2797053915, 0.3818300505, 0.3818300505, 0.4179591837, 0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345, 0.3137066459, 0.3137066459, 0.3626837834, 0.3626837834 ]; return { TOLERANCE: 10e-6, /** * Gauss-Legendre Numerical Integration, ported from Singularity: * * Copyright (c) 2006-2007, Jim Armstrong (www.algorithmist.net) * All Rights Reserved. */ integrate: function(f, a, b, n) { n = Math.min(Math.max(n, 2), 8); var l = n == 2 ? 0 : n * (n - 1) / 2 - 1, sum = 0, mul = 0.5 * (b - a), ab2 = mul + a; for(var i = 0; i < n; i++) sum += f(ab2 + mul * abscissa[l + i]) * weight[l + i]; return mul * sum; }, findRootNewton: function(f, fd, a, b, n, tol) { var x = 0.5 * (a + b); for (var i = 0; i < n; i++) { var dx = f(x) / fd(x); x -= dx; if (Math.abs(dx) < tol) return x; } return x; }, findRootFalsePosition: function(f, a, b, n, tol) { var fa = f(a), fb = f(b), dx = b - a, del, x; for (var i = 0; i <= n; i++) { x = a + dx * fa / (fa - fb); var fx = f(x); if (fx < 0) { del = a - x; a = x; fa = fx; } else { del = b - x; b = x; fb = fx; } dx = b - a; if (Math.abs(del) < tol || fx == 0) return x; } return x; }, }; };