/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey * http://scratchdisk.com/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name Curve * * @class The Curve object represents the parts of a path that are connected by * two following {@link Segment} objects. The curves of a path can be accessed * through its {@link Path#curves} array. * * While a segment describe the anchor point and its incoming and outgoing * handles, a Curve object describes the curve passing between two such * segments. Curves and segments represent two different ways of looking at the * same thing, but focusing on different aspects. Curves for example offer many * convenient ways to work with parts of the path, finding lengths, positions or * tangents at given offsets. */ var Curve = Base.extend(/** @lends Curve# */{ _class: 'Curve', /** * Creates a new curve object. * * @name Curve#initialize * @param {Segment} segment1 * @param {Segment} segment2 */ /** * Creates a new curve object. * * @name Curve#initialize * @param {Point} point1 * @param {Point} handle1 * @param {Point} handle2 * @param {Point} point2 */ /** * Creates a new curve object. * * @name Curve#initialize * @ignore * @param {Number} x1 * @param {Number} y1 * @param {Number} handle1x * @param {Number} handle1y * @param {Number} handle2x * @param {Number} handle2y * @param {Number} x2 * @param {Number} y2 */ initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) { var count = arguments.length; if (count === 3) { // Undocumented internal constructor, used by Path#getCurves() // new Segment(path, segment1, segment2); this._path = arg0; this._segment1 = arg1; this._segment2 = arg2; } else if (count === 0) { this._segment1 = new Segment(); this._segment2 = new Segment(); } else if (count === 1) { // new Segment(segment); // Note: This copies from existing segments through bean getters this._segment1 = new Segment(arg0.segment1); this._segment2 = new Segment(arg0.segment2); } else if (count === 2) { // new Segment(segment1, segment2); this._segment1 = new Segment(arg0); this._segment2 = new Segment(arg1); } else { var point1, handle1, handle2, point2; if (count === 4) { point1 = arg0; handle1 = arg1; handle2 = arg2; point2 = arg3; } else if (count === 8) { // Convert getValue() array back to points and handles so we // can create segments for those. point1 = [arg0, arg1]; point2 = [arg6, arg7]; handle1 = [arg2 - arg0, arg3 - arg1]; handle2 = [arg4 - arg6, arg5 - arg7]; } this._segment1 = new Segment(point1, null, handle1); this._segment2 = new Segment(point2, handle2, null); } }, _changed: function() { // Clear cached values. this._length = this._bounds = undefined; }, /** * The first anchor point of the curve. * * @type Point * @bean */ getPoint1: function() { return this._segment1._point; }, setPoint1: function(/* point */) { var point = Point.read(arguments); this._segment1._point.set(point.x, point.y); }, /** * The second anchor point of the curve. * * @type Point * @bean */ getPoint2: function() { return this._segment2._point; }, setPoint2: function(/* point */) { var point = Point.read(arguments); this._segment2._point.set(point.x, point.y); }, /** * The handle point that describes the tangent in the first anchor point. * * @type Point * @bean */ getHandle1: function() { return this._segment1._handleOut; }, setHandle1: function(/* point */) { var point = Point.read(arguments); this._segment1._handleOut.set(point.x, point.y); }, /** * The handle point that describes the tangent in the second anchor point. * * @type Point * @bean */ getHandle2: function() { return this._segment2._handleIn; }, setHandle2: function(/* point */) { var point = Point.read(arguments); this._segment2._handleIn.set(point.x, point.y); }, /** * The first segment of the curve. * * @type Segment * @bean */ getSegment1: function() { return this._segment1; }, /** * The second segment of the curve. * * @type Segment * @bean */ getSegment2: function() { return this._segment2; }, /** * The path that the curve belongs to. * * @type Path * @bean */ getPath: function() { return this._path; }, /** * The index of the curve in the {@link Path#curves} array. * * @type Number * @bean */ getIndex: function() { return this._segment1._index; }, /** * The next curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getNext: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index + 1] || this._path._closed && curves[0]) || null; }, /** * The previous curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getPrevious: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index - 1] || this._path._closed && curves[curves.length - 1]) || null; }, /** * Specifies whether the points and handles of the curve are selected. * * @type Boolean * @bean */ isSelected: function() { return this.getPoint1().isSelected() && this.getHandle2().isSelected() && this.getHandle2().isSelected() && this.getPoint2().isSelected(); }, setSelected: function(selected) { this.getPoint1().setSelected(selected); this.getHandle1().setSelected(selected); this.getHandle2().setSelected(selected); this.getPoint2().setSelected(selected); }, getValues: function(matrix) { return Curve.getValues(this._segment1, this._segment2, matrix); }, getPoints: function() { // Convert to array of absolute points var coords = this.getValues(), points = []; for (var i = 0; i < 8; i += 2) points.push(new Point(coords[i], coords[i + 1])); return points; }, /** * The approximated length of the curve in points. * * @type Number * @bean */ getLength: function() { if (this._length == null) { // Use simple point distance for linear curves this._length = this.isLinear() ? this._segment2._point.getDistance(this._segment1._point) : Curve.getLength(this.getValues(), 0, 1); } return this._length; }, getArea: function() { return Curve.getArea(this.getValues()); }, getPart: function(from, to) { return new Curve(Curve.getPart(this.getValues(), from, to)); }, // DOCS: Curve#getPartLength(from, to) getPartLength: function(from, to) { return Curve.getLength(this.getValues(), from, to); }, /** * Checks if this curve is linear, meaning it does not define any curve * handle. * @return {Boolean} {@true if the curve is linear} */ isLinear: function() { return this._segment1._handleOut.isZero() && this._segment2._handleIn.isZero(); }, isHorizontal: function() { return this.isLinear() && Numerical.isZero( this._segment1._point._y - this._segment2._point._y); }, // DOCS: Curve#getIntersections() getIntersections: function(curve) { return Curve.filterIntersections(Curve.getIntersections( this.getValues(), curve.getValues(), this, curve, [])); }, // TODO: adjustThroughPoint /** * Private method that handles all types of offset / isParameter pairs and * converts it to a curve parameter. */ _getParameter: function(offset, isParameter) { return isParameter ? offset // Accept CurveLocation objects, and objects that act like // them: : offset && offset.curve === this ? offset.parameter : offset === undefined && isParameter === undefined ? 0.5 // default is in the middle : this.getParameterAt(offset, 0); }, /** * Divides the curve into two curves at the given offset. The curve itself * is modified and becomes the first part, the second part is returned as a * new curve. If the modified curve belongs to a path item, the second part * is also added to the path. * * @name Curve#divide * @function * @param {Number} [offset=0.5] the offset on the curve at which to split, * or the curve time parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Curve} the second part of the divided curve */ // TODO: Rename to divideAt()? divide: function(offset, isParameter, ignoreLinear) { var parameter = this._getParameter(offset, isParameter), tolerance = /*#=*/Numerical.TOLERANCE, res = null; if (parameter > tolerance && parameter < 1 - tolerance) { var parts = Curve.subdivide(this.getValues(), parameter), isLinear = ignoreLinear ? false : this.isLinear(), left = parts[0], right = parts[1]; // Write back the results: if (!isLinear) { this._segment1._handleOut.set(left[2] - left[0], left[3] - left[1]); // segment2 is the end segment. By inserting newSegment // between segment1 and 2, 2 becomes the end segment. // Convert absolute -> relative this._segment2._handleIn.set(right[4] - right[6], right[5] - right[7]); } // Create the new segment, convert absolute -> relative: var x = left[6], y = left[7], segment = new Segment(new Point(x, y), !isLinear && new Point(left[4] - x, left[5] - y), !isLinear && new Point(right[2] - x, right[3] - y)); // Insert it in the segments list, if needed: if (this._path) { // Insert at the end if this curve is a closing curve of a // closed path, since otherwise it would be inserted at 0. if (this._segment1._index > 0 && this._segment2._index === 0) { this._path.add(segment); } else { this._path.insert(this._segment2._index, segment); } // The way Path#_add handles curves, this curve will always // become the owner of the newly inserted segment. // TODO: I expect this.getNext() to produce the correct result, // but since we're inserting differently in _add (something // linked with CurveLocation#divide()), this is not the case... res = this; // this.getNext(); } else { // otherwise create it from the result of split var end = this._segment2; this._segment2 = segment; res = new Curve(segment, end); } } return res; }, /** * Splits the path this curve belongs to at the given offset. After * splitting, the path will be open. If the path was open already, splitting * will result in two paths. * * @name Curve#split * @function * @param {Number} [offset=0.5] the offset on the curve at which to split, * or the curve time parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Path} the newly created path after splitting, if any * @see Path#split(index, parameter) */ // TODO: Rename to splitAt()? split: function(offset, isParameter) { return this._path ? this._path.split(this._segment1._index, this._getParameter(offset, isParameter)) : null; }, /** * Returns a reversed version of the curve, without modifying the curve * itself. * * @return {Curve} a reversed version of the curve */ reverse: function() { return new Curve(this._segment2.reverse(), this._segment1.reverse()); }, /** * Removes the curve from the path that it belongs to, by merging its two * path segments. * @return {Boolean} {@true if the curve was removed} */ remove: function() { var removed = false; if (this._path) { var segment2 = this._segment2, handleOut = segment2._handleOut; removed = segment2.remove(); if (removed) this._segment1._handleOut.set(handleOut.x, handleOut.y); } return removed; }, /** * Returns a copy of the curve. * * @return {Curve} */ clone: function() { return new Curve(this._segment1, this._segment2); }, /** * @return {String} a string representation of the curve */ toString: function() { var parts = [ 'point1: ' + this._segment1._point ]; if (!this._segment1._handleOut.isZero()) parts.push('handle1: ' + this._segment1._handleOut); if (!this._segment2._handleIn.isZero()) parts.push('handle2: ' + this._segment2._handleIn); parts.push('point2: ' + this._segment2._point); return '{ ' + parts.join(', ') + ' }'; }, // Mess with indentation in order to get more line-space below... statics: { getValues: function(segment1, segment2, matrix) { var p1 = segment1._point, h1 = segment1._handleOut, h2 = segment2._handleIn, p2 = segment2._point, values = [ p1._x, p1._y, p1._x + h1._x, p1._y + h1._y, p2._x + h2._x, p2._y + h2._y, p2._x, p2._y ]; if (matrix) matrix._transformCoordinates(values, values, 4); return values; }, // TODO: Instead of constants for type, use a "enum" and code substitution. evaluate: function(v, t, type) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], tolerance = /*#=*/Numerical.TOLERANCE, x, y; // Handle special case at beginning / end of curve if (type === 0 && (t < tolerance || t > 1 - tolerance)) { var isZero = t < tolerance; x = isZero ? p1x : p2x; y = isZero ? p1y : p2y; } else { // Calculate the polynomial coefficients. var cx = 3 * (c1x - p1x), bx = 3 * (c2x - c1x) - cx, ax = p2x - p1x - cx - bx, cy = 3 * (c1y - p1y), by = 3 * (c2y - c1y) - cy, ay = p2y - p1y - cy - by; if (type === 0) { // Calculate the curve point at parameter value t x = ((ax * t + bx) * t + cx) * t + p1x; y = ((ay * t + by) * t + cy) * t + p1y; } else { // 1: tangent, 1st derivative // 2: normal, 1st derivative // 3: curvature, 1st derivative & 2nd derivative // Prevent tangents and normals of length 0: // http://stackoverflow.com/questions/10506868/ if (t < tolerance && c1x === p1x && c1y === p1y || t > 1 - tolerance && c2x === p2x && c2y === p2y) { x = c2x - c1x; y = c2y - c1y; } else if (t < tolerance) { x = cx; y = cy; } else if (t > 1 - tolerance) { x = 3 * (p2x - c2x); y = 3 * (p2y - c2y); } else { // Simply use the derivation of the bezier function for both // the x and y coordinates: x = (3 * ax * t + 2 * bx) * t + cx; y = (3 * ay * t + 2 * by) * t + cy; } if (type === 3) { // Calculate 2nd derivative, and curvature from there: // http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31 // k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2)) var x2 = 6 * ax * t + 2 * bx, y2 = 6 * ay * t + 2 * by; return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2); } } } // The normal is simply the rotated tangent: return type === 2 ? new Point(y, -x) : new Point(x, y); }, subdivide: function(v, t) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7]; if (t === undefined) t = 0.5; // Triangle computation, with loops unrolled. var u = 1 - t, // Interpolate from 4 to 3 points p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y, p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y, p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y, // Interpolate from 3 to 2 points p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y, p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y, // Interpolate from 2 points to 1 point p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y; // We now have all the values we need to build the sub-curves: return [ [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right ]; }, // Converts from the point coordinates (p1, c1, c2, p2) for one axis to // the polynomial coefficients and solves the polynomial for val solveCubic: function (v, coord, val, roots, min, max) { var p1 = v[coord], c1 = v[coord + 2], c2 = v[coord + 4], p2 = v[coord + 6], c = 3 * (c1 - p1), b = 3 * (c2 - c1) - c, a = p2 - p1 - c - b; return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); }, getParameterOf: function(v, x, y) { // Handle beginnings and end separately, as they are not detected // sometimes. var tolerance = /*#=*/Numerical.TOLERANCE; if (Math.abs(v[0] - x) < tolerance && Math.abs(v[1] - y) < tolerance) return 0; if (Math.abs(v[6] - x) < tolerance && Math.abs(v[7] - y) < tolerance) return 1; var txs = [], tys = [], sx = Curve.solveCubic(v, 0, x, txs, 0, 1), sy = Curve.solveCubic(v, 1, y, tys, 0, 1), tx, ty; // sx, sy == -1 means infinite solutions: // Loop through all solutions for x and match with solutions for y, // to see if we either have a matching pair, or infinite solutions // for one or the other. for (var cx = 0; sx == -1 || cx < sx;) { if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) { for (var cy = 0; sy == -1 || cy < sy;) { if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) { // Handle infinite solutions by assigning root of // the other polynomial if (sx == -1) tx = ty; else if (sy == -1) ty = tx; // Use average if we're within tolerance if (Math.abs(tx - ty) < tolerance) return (tx + ty) * 0.5; } } // Avoid endless loops here: If sx is infinite and there was // no fitting ty, there's no solution for this bezier if (sx == -1) break; } } return null; }, // TODO: Find better name getPart: function(v, from, to) { if (from > 0) v = Curve.subdivide(v, from)[1]; // [1] right // Interpolate the parameter at 'to' in the new curve and cut there. if (to < 1) v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left return v; }, isLinear: function(v) { var isZero = Numerical.isZero; return isZero(v[0] - v[2]) && isZero(v[1] - v[3]) && isZero(v[4] - v[6]) && isZero(v[5] - v[7]); }, isFlatEnough: function(v, tolerance) { // Thanks to Kaspar Fischer and Roger Willcocks for the following: // http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], ux = 3 * c1x - 2 * p1x - p2x, uy = 3 * c1y - 2 * p1y - p2y, vx = 3 * c2x - 2 * p2x - p1x, vy = 3 * c2y - 2 * p2y - p1y; return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy) < 10 * tolerance * tolerance; }, getArea: function(v) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7]; // http://objectmix.com/graphics/133553-area-closed-bezier-curve.html return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x - 1.5 * c1y * p2x - 3.0 * p1y * c1x - 1.5 * p1y * c2x - 0.5 * p1y * p2x + 1.5 * c2y * p1x + 1.5 * c2y * c1x - 3.0 * c2y * p2x + 0.5 * p2y * p1x + 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10; }, getBounds: function(v) { var min = v.slice(0, 2), // Start with values of point1 max = min.slice(), // clone roots = [0, 0]; for (var i = 0; i < 2; i++) Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6], i, 0, min, max, roots); return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]); }, /** * Private helper for both Curve.getBounds() and Path.getBounds(), which * finds the 0-crossings of the derivative of a bezier curve polynomial, to * determine potential extremas when finding the bounds of a curve. * Note: padding is only used for Path.getBounds(). */ _addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) { // Code ported and further optimised from: // http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html function add(value, padding) { var left = value - padding, right = value + padding; if (left < min[coord]) min[coord] = left; if (right > max[coord]) max[coord] = right; } // Calculate derivative of our bezier polynomial, divided by 3. // Doing so allows for simpler calculations of a, b, c and leads to the // same quadratic roots. var a = 3 * (v1 - v2) - v0 + v3, b = 2 * (v0 + v2) - 4 * v1, c = v1 - v0, count = Numerical.solveQuadratic(a, b, c, roots), // Add some tolerance for good roots, as t = 0 / 1 are added // separately anyhow, and we don't want joins to be added with // radiuses in getStrokeBounds() tMin = /*#=*/Numerical.TOLERANCE, tMax = 1 - tMin; // Only add strokeWidth to bounds for points which lie within 0 < t < 1 // The corner cases for cap and join are handled in getStrokeBounds() add(v3, 0); for (var i = 0; i < count; i++) { var t = roots[i], u = 1 - t; // Test for good roots and only add to bounds if good. if (tMin < t && t < tMax) // Calculate bezier polynomial at t. add(u * u * u * v0 + 3 * u * u * t * v1 + 3 * u * t * t * v2 + t * t * t * v3, padding); } } }}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'], // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // determine the bounds of Curve objects with defined segment1 and segment2 // values Curve.getBounds() can be used directly on curve arrays, without // the need to create a Curve object first, as required by the code that // finds path interesections. function(name) { this[name] = function() { if (!this._bounds) this._bounds = {}; var bounds = this._bounds[name]; if (!bounds) { // Calculate the curve bounds by passing a segment list for the // curve to the static Path.get*Boudns methods. bounds = this._bounds[name] = Path[name]([this._segment1, this._segment2], false, this._path.getStyle()); } return bounds.clone(); }; }, /** @lends Curve# */{ /** * The bounding rectangle of the curve excluding stroke width. * * @name Curve#bounds * @type Rectangle */ /** * The bounding rectangle of the curve including stroke width. * * @name Curve#strokeBounds * @type Rectangle */ /** * The bounding rectangle of the curve including handles. * * @name Curve#handleBounds * @type Rectangle */ /** * The rough bounding rectangle of the curve that is shure to include all of * the drawing, including stroke width. * * @name Curve#roughBounds * @type Rectangle * @ignore */ }), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'], // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // determine the bounds of Curve objects with defined segment1 and segment2 // values Curve.getBounds() can be used directly on curve arrays, without // the need to create a Curve object first, as required by the code that // finds path interesections. function(name, index) { this[name + 'At'] = function(offset, isParameter) { var values = this.getValues(); return Curve.evaluate(values, isParameter ? offset : Curve.getParameterAt(values, offset, 0), index); }; // Deprecated and undocumented, but keep around for now. // TODO: Remove once enough time has passed (28.01.2013) this[name] = function(parameter) { return Curve.evaluate(this.getValues(), parameter, index); }; }, /** @lends Curve# */{ // Explicitly deactivate the creation of beans, as we have functions here // that look like bean getters but actually read arguments. // See #getParameterOf(), #getLocationOf(), #getNearestLocation(), ... beans: false, /** * Calculates the curve time parameter of the specified offset on the path, * relative to the provided start parameter. If offset is a negative value, * the parameter is searched to the left of the start parameter. If no start * parameter is provided, a default of {@code 0} for positive values of * {@code offset} and {@code 1} for negative values of {@code offset}. * @param {Number} offset * @param {Number} [start] * @return {Number} the curve time parameter at the specified offset. */ getParameterAt: function(offset, start) { return Curve.getParameterAt(this.getValues(), offset, start); }, /** * Returns the curve time parameter of the specified point if it lies on the * curve, {@code null} otherwise. * @param {Point} point the point on the curve. * @return {Number} the curve time parameter of the specified point. */ getParameterOf: function(/* point */) { var point = Point.read(arguments); return Curve.getParameterOf(this.getValues(), point.x, point.y); }, /** * Calculates the curve location at the specified offset or curve time * parameter. * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {CurveLocation} the curve location at the specified the offset. */ getLocationAt: function(offset, isParameter) { if (!isParameter) offset = this.getParameterAt(offset); return offset >= 0 && offset <= 1 && new CurveLocation(this, offset); }, /** * Returns the curve location of the specified point if it lies on the * curve, {@code null} otherwise. * @param {Point} point the point on the curve. * @return {CurveLocation} the curve location of the specified point. */ getLocationOf: function(/* point */) { return this.getLocationAt(this.getParameterOf(Point.read(arguments)), true); }, /** * Returns the length of the path from its beginning up to up to the * specified point if it lies on the path, {@code null} otherwise. * @param {Point} point the point on the path. * @return {Number} the length of the path up to the specified point. */ getOffsetOf: function(/* point */) { var loc = this.getLocationOf.apply(this, arguments); return loc ? loc.getOffset() : null; }, getNearestLocation: function(/* point */) { var point = Point.read(arguments), values = this.getValues(), count = 100, minDist = Infinity, minT = 0; function refine(t) { if (t >= 0 && t <= 1) { var dist = point.getDistance( Curve.evaluate(values, t, 0), true); if (dist < minDist) { minDist = dist; minT = t; return true; } } } for (var i = 0; i <= count; i++) refine(i / count); // Now iteratively refine solution until we reach desired precision. var step = 1 / (count * 2); while (step > /*#=*/Numerical.TOLERANCE) { if (!refine(minT - step) && !refine(minT + step)) step /= 2; } var pt = Curve.evaluate(values, minT, 0); return new CurveLocation(this, minT, pt, null, null, null, point.getDistance(pt)); }, getNearestPoint: function(/* point */) { return this.getNearestLocation.apply(this, arguments).getPoint(); } /** * Calculates the point on the curve at the given offset. * * @name Curve#getPointAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the point on the curve at the specified offset. */ /** * Calculates the tangent vector of the curve at the given offset. * * @name Curve#getTangentAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the tangent of the curve at the specified offset. */ /** * Calculates the normal vector of the curve at the given offset. * * @name Curve#getNormalAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the normal of the curve at the specified offset. */ /** * Calculates the curvature of the curve at the given offset. Curvatures * indicate how sharply a curve changes direction. A straight line has zero * curvature, where as a circle has a constant curvature. The curve's radius * at the given offset is the reciprocal value of its curvature. * * @name Curve#getCurvatureAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Number} the curvature of the curve at the specified offset. */ }), new function() { // Scope for methods that require numerical integration function getLengthIntegrand(v) { // Calculate the coefficients of a Bezier derivative. var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), bx = 6 * (p1x + c2x) - 12 * c1x, cx = 3 * (c1x - p1x), ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), by = 6 * (p1y + c2y) - 12 * c1y, cy = 3 * (c1y - p1y); return function(t) { // Calculate quadratic equations of derivatives for x and y var dx = (ax * t + bx) * t + cx, dy = (ay * t + by) * t + cy; return Math.sqrt(dx * dx + dy * dy); }; } // Amount of integral evaluations for the interval 0 <= a < b <= 1 function getIterations(a, b) { // Guess required precision based and size of range... // TODO: There should be much better educated guesses for // this. Also, what does this depend on? Required precision? return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32))); } return { statics: true, getLength: function(v, a, b) { if (a === undefined) a = 0; if (b === undefined) b = 1; var isZero = Numerical.isZero; // See if the curve is linear by checking p1 == c1 and p2 == c2 if (a === 0 && b === 1 && isZero(v[0] - v[2]) && isZero(v[1] - v[3]) && isZero(v[6] - v[4]) && isZero(v[7] - v[5])) { // Straight line var dx = v[6] - v[0], // p2x - p1x dy = v[7] - v[1]; // p2y - p1y return Math.sqrt(dx * dx + dy * dy); } var ds = getLengthIntegrand(v); return Numerical.integrate(ds, a, b, getIterations(a, b)); }, getParameterAt: function(v, offset, start) { if (start === undefined) start = offset < 0 ? 1 : 0 if (offset === 0) return start; // See if we're going forward or backward, and handle cases // differently var forward = offset > 0, a = forward ? start : 0, b = forward ? 1 : start, // Use integrand to calculate both range length and part // lengths in f(t) below. ds = getLengthIntegrand(v), // Get length of total range rangeLength = Numerical.integrate(ds, a, b, getIterations(a, b)); if (Math.abs(offset) >= rangeLength) return forward ? b : a; // Use offset / rangeLength for an initial guess for t, to // bring us closer: var guess = offset / rangeLength, length = 0; // Iteratively calculate curve range lengths, and add them up, // using integration precision depending on the size of the // range. This is much faster and also more precise than not // modifying start and calculating total length each time. function f(t) { // When start > t, the integration returns a negative value. length += Numerical.integrate(ds, start, t, getIterations(start, t)); start = t; return length - offset; } // Start with out initial guess for x. // NOTE: guess is a negative value when not looking forward. return Numerical.findRoot(f, ds, start + guess, a, b, 16, /*#=*/Numerical.TOLERANCE); } }; }, new function() { // Scope for intersection using bezier fat-line clipping function addLocation(locations, include, curve1, t1, point1, curve2, t2, point2) { var loc = new CurveLocation(curve1, t1, point1, curve2, t2, point2); if (!include || include(loc)) locations.push(loc); } function addCurveIntersections(v1, v2, curve1, curve2, locations, include, tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion) { /*#*/ if (__options.fatlineClipping) { // Avoid deeper recursion. // NOTE: @iconexperience determined that more than 20 recursions are // needed sometimes, depending on the tDiff threshold values further // below when determining which curve converges the least. He also // recommended a threshold of 0.5 instead of the initial 0.8 // See: https://github.com/paperjs/paper.js/issues/565 if (recursion > 32) return; // Let P be the first curve and Q be the second var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7], tolerance = /*#=*/Numerical.TOLERANCE, hullEpsilon = 1e-9, // Calculate the fat-line L for Q is the baseline l and two // offsets which completely encloses the curve P. d1 = getSignedDistance(q0x, q0y, q3x, q3y, v2[2], v2[3]) || 0, d2 = getSignedDistance(q0x, q0y, q3x, q3y, v2[4], v2[5]) || 0, factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9, dMin = factor * Math.min(0, d1, d2), dMax = factor * Math.max(0, d1, d2), // Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the // distance of P from the baseline l of the fat-line, ti is equally // spaced in [0, 1] dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]), dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]), dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]), dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]), tMinNew, tMaxNew, tDiff; if (q0x === q3x && uMax - uMin <= hullEpsilon && recursion > 4) { // The fatline of Q has converged to a point, the clipping is not // reliable. Return the value we have even though we will miss the // precision. tMaxNew = tMinNew = (tMax + tMin) / 2; tDiff = 0; } else { // Get the top and bottom parts of the convex-hull var hull = getConvexHull(dp0, dp1, dp2, dp3), top = hull[0], bottom = hull[1], tMinClip, tMaxClip; // Clip the convex-hull with dMin and dMax tMinClip = clipConvexHull(top, bottom, dMin, dMax); top.reverse(); bottom.reverse(); tMaxClip = clipConvexHull(top, bottom, dMin, dMax); // No intersections if one of the tvalues are null or 'undefined' if (tMinClip == null || tMaxClip == null) return false; // Clip P with the fatline for Q v1 = Curve.getPart(v1, tMinClip, tMaxClip); tDiff = tMaxClip - tMinClip; // tMin and tMax are within the range (0, 1). We need to project it // to the original parameter range for v2. tMinNew = tMax * tMinClip + tMin * (1 - tMinClip); tMaxNew = tMax * tMaxClip + tMin * (1 - tMaxClip); } // Check if we need to subdivide the curves if (oldTDiff > 0.5 && tDiff > 0.5) { // Subdivide the curve which has converged the least. if (tMaxNew - tMinNew > uMax - uMin) { var parts = Curve.subdivide(v1, 0.5), t = tMinNew + (tMaxNew - tMinNew) / 2; addCurveIntersections( v2, parts[0], curve2, curve1, locations, include, uMin, uMax, tMinNew, t, tDiff, !reverse, ++recursion); addCurveIntersections( v2, parts[1], curve2, curve1, locations, include, uMin, uMax, t, tMaxNew, tDiff, !reverse, recursion); } else { var parts = Curve.subdivide(v2, 0.5), t = uMin + (uMax - uMin) / 2; addCurveIntersections( parts[0], v1, curve2, curve1, locations, include, uMin, t, tMinNew, tMaxNew, tDiff, !reverse, ++recursion); addCurveIntersections( parts[1], v1, curve2, curve1, locations, include, t, uMax, tMinNew, tMaxNew, tDiff, !reverse, recursion); } } else if (Math.max(uMax - uMin, tMaxNew - tMinNew) < tolerance) { // We have isolated the intersection with sufficient precision var t1 = tMinNew + (tMaxNew - tMinNew) / 2, t2 = uMin + (uMax - uMin) / 2; if (reverse) { addLocation(locations, include, curve2, t2, Curve.evaluate(v2, t2, 0), curve1, t1, Curve.evaluate(v1, t1, 0)); } else { addLocation(locations, include, curve1, t1, Curve.evaluate(v1, t1, 0), curve2, t2, Curve.evaluate(v2, t2, 0)); } } else { // Iterate addCurveIntersections(v2, v1, curve2, curve1, locations, include, uMin, uMax, tMinNew, tMaxNew, tDiff, !reverse, ++recursion); } /*#*/ } else { // !__options.fatlineClipping // Subdivision method var bounds1 = Curve.getBounds(v1), bounds2 = Curve.getBounds(v2), tolerance = /*#=*/Numerical.TOLERANCE; if (bounds1.touches(bounds2)) { // See if both curves are flat enough to be treated as lines, either // because they have no control points at all, or are "flat enough" // If the curve was flat in a previous iteration, we don't need to // recalculate since it does not need further subdivision then. if ((Curve.isLinear(v1) || Curve.isFlatEnough(v1, tolerance)) && (Curve.isLinear(v2) || Curve.isFlatEnough(v2, tolerance))) { // See if the parametric equations of the lines interesct. addLineIntersection(v1, v2, curve1, curve2, locations, include); } else { // Subdivide both curves, and see if they intersect. // If one of the curves is flat already, no further subdivion // is required. var v1s = Curve.subdivide(v1), v2s = Curve.subdivide(v2); for (var i = 0; i < 2; i++) for (var j = 0; j < 2; j++) addCurveIntersections(v1s[i], v2s[j], curve1, curve2, locations, include); } } /*#*/ } // !__options.fatlineClipping } /*#*/ if (__options.fatlineClipping) { function getSignedDistance(l1x, l1y, l2x, l2y, x, y) { var vx = l2x - l1x, vy = l2y - l1y; if (Numerical.isZero(vx)) return vy >= 0 ? l1y - x : x - l1x; var m = vy / vx, // slope b = l1y - m * l1x; // y offset // Distance to the linear equation return (y - (m * x) - b) / Math.sqrt(m * m + 1); } /** * Calculate the convex hull for the non-parametric bezier curve D(ti, di(t)) * The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for * di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the * curve are already sorted in the X axis in the increasing order. * Calculating convex-hull is much easier than a set of arbitrary points. * * The convex-hull is returned as two parts [TOP, BOTTOM]: * (both are in a coordinate space where y increases upwards with origin at * bottom-left) * TOP: The part that lies above the 'median' (line connecting end points of * the curve) * BOTTOM: The part that lies below the median. */ function getConvexHull(dq0, dq1, dq2, dq3) { var p0 = [ 0, dq0 ], p1 = [ 1 / 3, dq1 ], p2 = [ 2 / 3, dq2 ], p3 = [ 1, dq3 ], // Find signed distance of p1 and p2 from line [ p0, p3 ] dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1), dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2), flip = false, hull; // Check if p1 and p2 are on the same side of the line [ p0, p3 ] if (dist1 * dist2 < 0) { // p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a // quadrilateral and line [ p0, p3 ] is NOT part of the hull so we // are pretty much done here. // The top part includes p1, // we will reverse it later if that is not the case hull = [[p0, p1, p3], [p0, p2, p3]]; flip = dist1 < 0; } else { // p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be // a triangle or a quadrilateral and line [ p0, p3 ] is part of the // hull. Check if the hull is a triangle or a quadrilateral. // Also, if at least one of the distances for p1 or p2, from line // [p0, p3] is zero then hull must at most have 3 vertices. var pmax, cross = 0, distZero = dist1 === 0 || dist2 === 0; if (Math.abs(dist1) > Math.abs(dist2)) { pmax = p1; // apex is dq3 and the other apex point is dq0 vector dqapex -> // dqapex2 or base vector which is already part of the hull. cross = (dq3 - dq2 - (dq3 - dq0) / 3) * (2 * (dq3 - dq2) - dq3 + dq1) / 3; } else { pmax = p2; // apex is dq0 in this case, and the other apex point is dq3 // vector dqapex -> dqapex2 or base vector which is already part // of the hull. cross = (dq1 - dq0 + (dq0 - dq3) / 3) * (-2 * (dq0 - dq1) + dq0 - dq2) / 3; } // Compare cross products of these vectors to determine if the point // is in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral. hull = cross < 0 || distZero // p2 is inside the triangle, hull is a triangle. ? [[p0, pmax, p3], [p0, p3]] // Convex hull is a quadrilateral and we need all lines in // correct order where line [ p0, p3 ] is part of the hull. : [[p0, p1, p2, p3], [p0, p3]]; flip = dist1 ? dist1 < 0 : dist2 < 0; } return flip ? hull.reverse() : hull; } /** * Clips the convex-hull and returns [tMin, tMax] for the curve contained */ function clipConvexHull(hullTop, hullBottom, dMin, dMax) { var tProxy, tVal = null, px, py, qx, qy; for (var i = 0, l = hullBottom.length - 1; i < l; i++) { py = hullBottom[i][1]; qy = hullBottom[i + 1][1]; if (py < qy) { tProxy = null; } else if (qy <= dMax) { px = hullBottom[i][0]; qx = hullBottom[i + 1][0]; tProxy = px + (dMax - py) * (qx - px) / (qy - py); } else { // Try the next chain continue; } // We got a proxy-t; break; } if (hullTop[0][1] <= dMax) tProxy = hullTop[0][0]; for (var i = 0, l = hullTop.length - 1; i < l; i++) { py = hullTop[i][1]; qy = hullTop[i + 1][1]; if (py >= dMin) { tVal = tProxy; } else if (py > qy) { tVal = null; } else if (qy >= dMin) { px = hullTop[i][0]; qx = hullTop[i + 1][0]; tVal = px + (dMin - py) * (qx - px) / (qy - py); } else { continue; } break; } return tVal; } /*#*/ } // __options.fatlineClipping /** * Intersections between curve and line becomes rather simple here mostly * because of Numerical class. We can rotate the curve and line so that the * line is on the X axis, and solve the implicit equations for the X axis * and the curve. */ function addCurveLineIntersections(v1, v2, curve1, curve2, locations, include) { var flip = Curve.isLinear(v1), vc = flip ? v2 : v1, vl = flip ? v1 : v2, lx1 = vl[0], ly1 = vl[1], lx2 = vl[6], ly2 = vl[7], // Rotate both curve and line around l1 so that line is on x axis. ldx = lx2 - lx1, ldy = ly2 - ly1, // Calculate angle to the x-axis (1, 0). angle = Math.atan2(-ldy, ldx), sin = Math.sin(angle), cos = Math.cos(angle), // (rlx1, rly1) = (0, 0) rlx2 = ldx * cos - ldy * sin, // The curve values for the rotated line. rvl = [0, 0, 0, 0, rlx2, 0, rlx2, 0], // Calculate the curve values of the rotated curve. rvc = []; for(var i = 0; i < 8; i += 2) { var x = vc[i] - lx1, y = vc[i + 1] - ly1; rvc.push( x * cos - y * sin, y * cos + x * sin); } var roots = [], count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1); // NOTE: count could be -1 for infinite solutions, but that should only // happen with lines, in which case we should not be here. for (var i = 0; i < count; i++) { var tc = roots[i], x = Curve.evaluate(rvc, tc, 0).x; // We do have a point on the infinite line. Check if it falls on // the line *segment*. if (x >= 0 && x <= rlx2) { // Find the parameter of the intersection on the rotated line. var tl = Curve.getParameterOf(rvl, x, 0), t1 = flip ? tl : tc, t2 = flip ? tc : tl; addLocation(locations, include, curve1, t1, Curve.evaluate(v1, t1, 0), curve2, t2, Curve.evaluate(v2, t2, 0)); } } } function addLineIntersection(v1, v2, curve1, curve2, locations, include) { var point = Line.intersect( v1[0], v1[1], v1[6], v1[7], v2[0], v2[1], v2[6], v2[7]); if (point) { // We need to return the parameters for the intersection, // since they will be used for sorting var x = point.x, y = point.y; addLocation(locations, include, curve1, Curve.getParameterOf(v1, x, y), point, curve2, Curve.getParameterOf(v2, x, y), point); } } return { statics: /** @lends Curve */{ // We need to provide the original left curve reference to the // #getIntersections() calls as it is required to create the resulting // CurveLocation objects. getIntersections: function(v1, v2, c1, c2, locations, include) { var linear1 = Curve.isLinear(v1), linear2 = Curve.isLinear(v2), c1p1 = c1.getPoint1(), c1p2 = c1.getPoint2(), c2p1 = c2.getPoint1(), c2p2 = c2.getPoint2(), tolerance = /*#=*/Numerical.TOLERANCE; // Handle a special case where if both curves start or end at the // same point, the same end-point case will be handled after we // calculate other intersections within the curve. if (c1p1.isClose(c2p1, tolerance)) addLocation(locations, include, c1, 0, c1p1, c2, 0, c1p1); if (c1p1.isClose(c2p2, tolerance)) addLocation(locations, include, c1, 0, c1p1, c2, 1, c1p1); // Determine the correct intersection method based on values of // linear1 & 2: (linear1 && linear2 ? addLineIntersection : linear1 || linear2 ? addCurveLineIntersections : addCurveIntersections)( v1, v2, c1, c2, locations, include, // Define the defaults for these parameters of // addCurveIntersections(): // tMin, tMax, uMin, uMax, oldTDiff, reverse, recursion 0, 1, 0, 1, 0, false, 0); // Handle the special case where c1's end-point overlap with // c2's points. if (c1p2.isClose(c2p1, tolerance)) addLocation(locations, include, c1, 1, c1p2, c2, 0, c1p2); if (c1p2.isClose(c2p2, tolerance)) addLocation(locations, include, c1, 1, c1p2, c2, 1, c1p2); return locations; }, filterIntersections: function(locations, _expand) { var max = locations.length - 1; // Merge intersections very close to the end of a curve to the // beginning of the next curve. for (var i = max; i >= 0; i--) { var loc = locations[i], next = loc._curve.getNext(), next2 = loc._curve2.getNext(); if (next && loc._parameter >= MAX) { loc._parameter = 0; loc._curve = next; } if (next2 && loc._parameter2 >= MAX) { loc._parameter2 = 0; loc._curve2 = next2; } } // Compare helper to filter locations function compare(loc1, loc2) { var path1 = loc1.getPath(), path2 = loc2.getPath(); return path1 === path2 // We can add parameter (0 <= t <= 1) to index // (a integer) to compare both at the same time ? (loc1.getIndex() + loc1.getParameter()) - (loc2.getIndex() + loc2.getParameter()) // Sort by path id to group all locations on the same path. : path1._id - path2._id; } if (max > 0) { locations.sort(compare); // Filter out duplicate locations for (var i = max; i >= 1; i--) { if (locations[i].equals(locations[i === 0 ? max : i - 1])) { locations.splice(i, 1); max--; } } } if (_expand) { for (var i = max; i >= 0; i--) locations.push(locations[i].getIntersection()); locations.sort(compare); } return locations; } }}; });