/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Distributed under the MIT license. See LICENSE file for details. * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * All rights reserved. */ var Curve = this.Curve = Base.extend({ beans: true, initialize: function(arg0, arg1, arg2, arg3) { if (arguments.length == 0) { this._segment1 = new Segment(); this._segment2 = new Segment(); } else if (arguments.length == 1) { // TODO: If beans are not activated, this won't copy from // an existing segment. OK? this._segment1 = new Segment(arg0.segment1); this._segment2 = new Segment(arg0.segment2); } else if (arguments.length == 2) { if (arg0 instanceof Path) { this._path = arg0; this._index1 = arg1; this._updateSegments(); } else { this._segment1 = new Segment(arg0); this._segment2 = new Segment(arg1); } } else if (arguments.length == 4) { this._segment1 = new Segment(arg0, null, arg1); this._segment2 = new Segment(arg3, arg2, null); } }, _updateSegments: function() { if (this._path) { this._index2 = this._index1 + 1; // A closing curve? var segments = this._path._segments; if (this._index2 >= segments.length) this._index2 = 0; this._segment1 = segments[this._index1]; this._segment2 = segments[this._index2]; } }, /** * The first anchor point of the curve. */ getPoint1: function() { return this._segment1._point; }, setPoint1: function(point) { point = Point.read(arguments); this._segment1._point.set(point.x, point.y); }, /** * The second anchor point of the curve. */ getPoint2: function() { return this._segment2._point; }, setPoint2: function(point) { point = Point.read(arguments); this._segment2._point.set(point.x, point.y); }, /** * The handle point that describes the tangent in the first anchor point. */ getHandle1: function() { return this._segment1._handleOut; }, setHandle1: function(point) { point = Point.read(arguments); this._segment1._handleOut.set(point.x, point.y); }, /** * The handle point that describes the tangent in the second anchor point. */ getHandle2: function() { return this._segment2._handleIn; }, setHandle2: function(point) { point = Point.read(arguments); this._segment2._handleIn.set(point.x, point.y); }, /** * The first segment of the curve. */ getSegment1: function() { return this._segment1; }, /** * The second segment of the curve. */ getSegment2: function() { return this._segment2; }, getPath: function() { return this._path; }, getIndex: function() { return this._index1; }, _setIndex: function(index) { this._index1 = index; this._updateSegments(); }, getNext: function() { var curves = this._path && this._path._curves; // TODO: Add cyclic looping when closed back to Scriptographer return curves && (curves[this._index1 + 1] || this._path.closed && curves[0]) || null; }, getPrevious: function() { var curves = this._path && this._path._curves; return curves && (curves[this._index1 - 1] || this._path.closed && curves[curves.length - 1]) || null; }, getCurveValues: function() { var p1 = this._segment1._point, h1 = this._segment1._handleOut, h2 = this._segment2._handleIn, p2 = this._segment2._point; return [ p1.x, p1.y, p1.x + h1.x, p1.y + h1.y, p2.x + h2.x, p2.y + h2.y, p2.x, p2.y ]; }, // TODO: Port back to Scriptographer, optionally suppporting from, to // TODO: Replaces getPartLength(fromParameter, toParameter)? getLength: function(/* from, to */) { // Hide parameters from Bootstrap so it injects bean too var args = this.getCurveValues(); if (arguments.length > 0) args.push(arguments[0], arguments[1]); return Curve.getLength.apply(Curve, args); }, /** * Checks if this curve is linear, meaning it does not define any curve * handle. * @return {@true if the curve is linear} */ isLinear: function() { return this._segment1._handleOut.isZero() && this._segment2._handleIn.isZero(); }, // TODO: Port support for start parameter back to Scriptographer getParameter: function(length, start) { var args = this.getCurveValues(); args.push(length, start !== undefined ? start : length < 0 ? 1 : 0); return Curve.getParameter.apply(Curve, args); }, // TODO: getParameter(point, precision) // TODO: getLocation // TODO: getIntersections // TODO: adjustThroughPoint transform: function(matrix) { return new Curve( matrix.transform(this._segment1._point), matrix.transform(this._segment1._handleOut), matrix.transform(this._segment2._handleIn), matrix.transform(this._segment2._point)); }, reverse: function() { return new Curve(this._segment2.reverse(), this._segment1.reverse()); }, // TODO: divide // TODO: split clone: function() { return new Curve(this._segment1, this._segment2); }, toString: function() { return '{ point1: ' + this._segment1._point + (!this._segment1._handleOut.isZero() ? ', handle1: ' + this._segment1._handleOut : '') + (this._segment2._handleIn.isZero() ? ', handle2: ' + this._segment2._handleIn : '') + ', point2: ' + this._segment2._point + ' }'; } }, new function() { function evaluate(that, t, type) { // Calculate the polynomial coefficients. caution: handles are relative // to points var point1 = that._segment1._point, handle1 = that._segment1._handleOut, handle2 = that._segment2._handleIn, point2 = that._segment2._point, x, y; // Handle special case at beginning / end of curve // TODO: Port back to Scriptographer, so 0.000000000001 won't be // required anymore if (t == 0 || t == 1) { var point; switch (type) { case 0: // point point = t == 0 ? point1 : point2; break; case 1: // tangent case 2: // normal point = t == 0 ? handle1.isZero() ? handle2.isZero() ? point2.subtract(point1) : point2.add(handle2).subtract(point1) : handle1 : handle2.isZero() // t == 1 ? handle1.isZero() ? point1.subtract(point2) : point1.add(handle1).subtract(point2) : handle2; break; } x = point.x; y = point.y; } else { var dx = point2.x - point1.x, cx = 3 * handle1.x, bx = 3 * (dx + handle2.x - handle1.x) - cx, ax = dx - cx - bx, dy = point2.y - point1.y, cy = 3 * handle1.y, by = 3 * (dy + handle2.y - handle1.y) - cy, ay = dy - cy - by; switch (type) { case 0: // point x = ((ax * t + bx) * t + cx) * t + point1.x; y = ((ay * t + by) * t + cy) * t + point1.y; break; case 1: // tangent case 2: // normal // Simply use the derivation of the bezier function for both // the x and y coordinates: x = (3 * ax * t + 2 * bx) * t + cx, y = (3 * ay * t + 2 * by) * t + cy; break; } } // The normal is simply the rotated tangent: // TODO: Rotate normals the other way in Scriptographer too? // (Depending on orientation, I guess?) return type == 2 ? new Point(y, -x) : new Point(x, y); } function getLengthIntegrand(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y) { // Calculate the coefficients of a Bezier derivative. var ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), bx = 6 * (p1x + c2x) - 12 * c1x, cx = 3 * (c1x - p1x), ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), by = 6 * (p1y + c2y) - 12 * c1y, cy = 3 * (c1y - p1y); return function(t) { // Calculate quadratic equations of derivatives for x and y var dx = (ax * t + bx) * t + cx, dy = (ay * t + by) * t + cy; return Math.sqrt(dx * dx + dy * dy); } } // Amount of integral evaluations var numEval = 16; return { getPoint: function(parameter) { return evaluate(this, parameter, 0); }, getTangent: function(parameter) { return evaluate(this, parameter, 1); }, getNormal: function(parameter) { return evaluate(this, parameter, 2); }, statics: { getLength: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, a, b) { if (a === undefined) a = 0; if (b === undefined) b = 1; if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) { // Straight line var dx = p2x - p1x, dy = p2y - p1y; return (b - a) * Math.sqrt(dx * dx + dy * dy); } var ds = getLengthIntegrand( p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y); return Numerical.integrate(ds, a, b, numEval); }, getParameter: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, length, start) { if (length == 0) { return start; } if (p1x == c1x && p1y == c1y && p2x == c2x && p2y == c2y) { // Straight line, calculate directly // t = length / lineLength: var dx = p2x - p1x, dy = p2y - p1y; return Math.max(Math.min(start + length / Math.sqrt(dx * dx + dy * dy), 0, 1)); } // Let's use the Van Wijngaarden–Dekker–Brent Method to find // solutions more reliably than with False Position Method. // The precision of 5 iterations seems enough for this var forward = length > 0, // Use integrand to calculate both range length and part // lengths in f(t) below. ds = getLengthIntegrand( p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y), a, b, f; // See if we're going forward or backward, and handle cases // differently if (forward) { // Normal way a = start; b = 1; // We're moving b to the right to find root for length f = function(t) { return Numerical.integrate(ds, a, t, numEval) - length; } } else { // Going backwards a = 0; b = start; length = -length; // We're moving a to the left to find root for length f = function(t) { return Numerical.integrate(ds, t, b, numEval) - length; } } var rangeLength = Numerical.integrate(ds, a, b, numEval); if (length >= rangeLength) return forward ? b : a; // Use length / rangeLength for an initial guess for t, to // bring us closer: var guess = length / rangeLength; return Numerical.findRootNewton(f, ds, forward ? a : b - guess, // a forward ? a + guess : b, // b 16, Numerical.TOLERANCE); }, subdivide: function(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) { var u = 1 - t, // Interpolate from 4 to 3 points p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y, p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y, p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y, // Interpolate from 3 to 2 points p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y, p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y, // Interpolate from 2 points to 1 point p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y; // We now have all the values we need to build the subcurves: return [ [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right ]; } } }; });