var Path = this.Path = PathItem.extend({ beans: true, initialize: function(/* segments */) { this.base(); this.closed = false; this._segments = []; // Support both passing of segments as array or arguments // If it is an array, it can also be a description of a point, so // check its first entry for object as well var segments = arguments[0]; if (!segments || !Array.isArray(segments) || typeof segments[0] != 'object') segments = arguments; for (var i = 0, l = segments.length; i < l; i++) { var seg = Segment.read(segments, i, 1); this._add(seg); } }, /** * The segments contained within the path. */ getSegments: function() { return this._segments; }, setSegments: function(segments) { var l = segments.length; this._segments = new Array(l); for(var i = 0; i < l; i++) { this._segments[i] = Segment.read(segments, i, 1); } }, /** * The curves contained within the path. */ getCurves: function() { var length = this._segments.length; // Reduce length by one if it's an open path: if (!this.closed && length > 0) length--; var curves = this._curves = this._curves || new Array(length); curves.length = length; for (var i = 0; i < length; i++) { var curve = curves[i]; if (!curve) { curve = curves[i] = new Curve(this, i); } else { // Make sure index is kept up to date. curve._setIndex(i); } } return curves; }, // TODO: Add back to Scriptographer: getFirstSegment: function() { return this._segments[0]; }, getLastSegment: function() { return this._segments[this._segments.length - 1]; }, // TODO: Consider adding getSubPath(a, b), returning a part of the current // path, with the added benefit that b can be < a, and closed looping is // taken into account. _transform: function(matrix, flags) { if (!matrix.isIdentity()) { var coords = new Array(6); for (var i = 0, l = this._segments.length; i < l; i++) { this._segments[i]._transformCoordinates(matrix, coords, true); } } }, /** * Private method that adds a segment to the segment list. It assumes that * the passed object is a segment already and does not perform any checks. */ _add: function(segment, index) { // If this segment belongs to another path already, clone it before // adding. if (segment._path) segment = new Segment(segment); segment._path = this; if (index == undefined) { this._segments.push(segment); } else { this._segments.splice(index, 0, segment); } return segment; }, add: function() { var segment = Segment.read(arguments); return segment ? this._add(segment) : null; }, insert: function(index, segment) { var segment = Segment.read(arguments, 1); return segment ? this._add(segment, index) : null; }, getLength: function() { var curves = this.getCurves(); var length = 0; for (var i = 0, l = curves.length; i < l; i++) length += curves[i].getLength(); return length; }, draw: function(ctx, param) { if (!param.compound) ctx.beginPath(); var segments = this._segments, length = segments.length, handleOut, outX, outY; for (var i = 0; i < length; i++) { var segment = segments[i], point = segment._point, x = point.x, y = point.y, handleIn = segment._handleIn; if (i == 0) { ctx.moveTo(x, y); } else { if (handleIn.isZero() && handleOut.isZero()) { ctx.lineTo(x, y); } else { ctx.bezierCurveTo( outX, outY, handleIn.x + x, handleIn.y + y, x, y ); } } handleOut = segment._handleOut; outX = handleOut.x + x; outY = handleOut.y + y; } if (this.closed && length > 1) { var segment = segments[0], point = segment._point, x = point.x, y = point.y, handleIn = segment._handleIn; ctx.bezierCurveTo(outX, outY, handleIn.x + x, handleIn.y + y, x, y); ctx.closePath(); } // If the path is part of a compound path or doesn't have a fill or // stroke, there is no need to continue. var fillColor = this.getFillColor(), strokeColor = this.getStrokeColor(); if (!param.compound && (fillColor || strokeColor)) { this.setContextStyles(ctx); ctx.save(); // If the path only defines a strokeColor or a fillColor, // draw it directly with the globalAlpha set, otherwise // we will do it later when we composite the temporary canvas. if (!fillColor || !strokeColor) ctx.globalAlpha = this.opacity; if (fillColor) { ctx.fillStyle = fillColor.getCanvasStyle(ctx); ctx.fill(); } if (strokeColor) { ctx.strokeStyle = strokeColor.getCanvasStyle(ctx); ctx.stroke(); } ctx.restore(); } } }, new function() { // Inject methods that require scoped privates // Add some tolerance for good roots, as t = 0 / 1 are added seperately // anyhow, and we don't want joins to be added with radiuses in // calculateBounds var epsilon = 10e-6, tMin = epsilon, tMax = 1 - epsilon; function calculateBounds(that, matrix, strokePadding) { // Code ported and further optimised from: // http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html var segments = that._segments, first = segments[0]; if (!first) return null; var coords = new Array(6), prevCoords = new Array(6); // Make coordinates for first segment available in prevCoords. if (matrix && matrix.isIdentity()) matrix = null; first._transformCoordinates(matrix, prevCoords, false); var min = prevCoords.slice(0, 2), max = min.slice(0); // clone function processSegment(segment) { segment._transformCoordinates(matrix, coords, false); for (var i = 0; i < 2; i++) { var v0 = prevCoords[i], // prev.point v1 = prevCoords[i + 4], // prev.handleOut v2 = coords[i + 2], // segment.handleIn v3 = coords[i]; // segment.point function add(value, t) { var padding = 0; if (value == null) { // Calculate bezier polynomial at t var u = 1 - t; value = u * u * u * v0 + 3 * u * u * t * v1 + 3 * u * t * t * v2 + t * t * t * v3; // Only add strokeWidth to bounds for points which lie // within 0 < t < 1. The corner cases for cap and join // are handled in getStrokeBounds() padding = strokePadding ? strokePadding[i] : 0; } var left = value - padding, right = value + padding; if (left < min[i]) min[i] = left; if (right > max[i]) max[i] = right; } add(v3, null); // Calculate derivative of our bezier polynomial, divided by 3. // Dividing by 3 allows for simpler calculations of a, b, c and // leads to the same quadratic roots below. var a = 3 * (v1 - v2) - v0 + v3, b = 2 * (v0 + v2) - 4 * v1, c = v1 - v0; // Solve for derivative for quadratic roots. Each good root // (meaning a solution 0 < t < 1) is an extrema in the cubic // polynomial and thus a potential point defining the bounds if (a == 0) { if (b == 0) continue; var t = -c / b; // Test for good root and add to bounds if good (same below) if (tMin < t && t < tMax) add(null, t); continue; } var b2ac = b * b - 4 * a * c; if (b2ac < 0) continue; var sqrt = Math.sqrt(b2ac), f = 1 / (a * -2), t1 = (b - sqrt) * f, t2 = (b + sqrt) * f; if (tMin < t1 && t1 < tMax) add(null, t1); if (tMin < t2 && t2 < tMax) add(null, t2); } // Swap coordinate buffers var tmp = prevCoords; prevCoords = coords; coords = tmp; } for (var i = 1, l = segments.length; i < l; i++) processSegment(segments[i]); if (that.closed) processSegment(first); return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]); } /** * Solves a tri-diagonal system for one of coordinates (x or y) of first * bezier control points. * * @param rhs right hand side vector. * @return Solution vector. */ function getFirstControlPoints(rhs) { var n = rhs.length; var x = []; // Solution vector. var tmp = []; // Temporary workspace. var b = 2; x[0] = rhs[0] / b; // Decomposition and forward substitution. for (var i = 1; i < n; i++) { tmp[i] = 1 / b; b = (i < n - 1 ? 4.0 : 2.0) - tmp[i]; x[i] = (rhs[i] - x[i - 1]) / b; } // Back-substitution. for (var i = 1; i < n; i++) { x[n - i - 1] -= tmp[n - i] * x[n - i]; } return x; }; var styles = { getStrokeWidth: 'lineWidth', getStrokeJoin: 'lineJoin', getStrokeCap: 'lineCap', getMiterLimit: 'miterLimit' }; return { beans: true, /** * The bounding rectangle of the item excluding stroke width. */ getBounds: function(matrix) { return calculateBounds(this, matrix); }, /** * The bounding rectangle of the item including stroke width. */ getStrokeBounds: function(matrix) { var width = this.getStrokeWidth(), radius = width / 2, padding = [radius, radius], join = this.getStrokeJoin(), cap = this.getStrokeCap(), // miter is relative to width. Divide it by 2 since we're // measuring half the distance below miter = this.getMiterLimit() * width / 2, segments = this._segments, length = segments.length, closed= this.closed, bounds = calculateBounds(this, matrix, padding); // If a matrix is provided, we need to rotate the stroke circle // and calculate the bounding box of the resulting rotated elipse: if (matrix) { // Get rotated hor and ver vectors, and determine rotation angle // and elipse values from them: var mx = matrix.createShiftless(), hor = mx.transform(new Point(radius, 0)), ver = mx.transform(new Point(0, radius)), phi = hor.getAngleInRadians(), a = hor.getLength(), b = ver.getLength(); // Formula for rotated ellipses: // x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // Derivates (by Wolfram Alpha): // derivative of x = cx + a*cos(t)*cos(phi) - b*sin(t)*sin(phi) // dx/dt = a sin(t) cos(phi) + b cos(t) sin(phi) = 0 // derivative of y = cy + b*sin(t)*cos(phi) + a*cos(t)*sin(phi) // dy/dt = b cos(t) cos(phi) - a sin(t) sin(phi) = 0 // this can be simplified to: // tan(t) = -b * tan(phi) / a // x // tan(t) = b * cot(phi) / a // y // Solving for t gives: // t = pi * n - arctan(b tan(phi)) // x // t = pi * n + arctan(b cot(phi)) // y var tx = - Math.atan(b * Math.tan(phi)), ty = + Math.atan(b / Math.tan(phi)), // Due to symetry, we don't need to cycle through pi * n // solutions: x = a * Math.cos(tx) * Math.cos(phi) - b * Math.sin(tx) * Math.sin(phi), y = b * Math.sin(ty) * Math.cos(phi) + a * Math.cos(ty) * Math.sin(phi); // Now update the join / round padding, as required by // calculateBounds() and code below. padding = [Math.abs(x), Math.abs(y)]; } // Create a rectangle of padding size, used for union with bounds // further down var joinBounds = new Rectangle(new Size(padding).multiply(2)); function add(point) { bounds = bounds.include(matrix ? matrix.transform(point) : point); } function addBevelJoin(curve, t) { var point = curve.getPoint(t), normal = curve.getNormal(t).normalize(radius); add(point.add(normal)); add(point.subtract(normal)); } function addJoin(segment, join) { var handleIn = segment.getHandleInIfSet(), handleOut = segment.getHandleOutIfSet(); // When both handles are set in a segment, the join setting is // ignored and round is always used. if (join == 'round' || handleIn && handleOut) { bounds = bounds.unite(joinBounds.setCenter(matrix ? matrix.transform(segment._point) : segment._point)); } else { switch (join) { case 'bevel': var curve = segment.getCurve(); addBevelJoin(curve, 0); addBevelJoin(curve.getPrevious(), 1); break; case 'miter': var curve2 = segment.getCurve(), curve1 = curve2.getPrevious(), point = curve2.getPoint(0), normal1 = curve1.getNormal(1).normalize(radius), normal2 = curve2.getNormal(0).normalize(radius), // Intersect the two lines line1 = new Line(point.add(normal1), new Point(-normal1.y, normal1.x)), line2 = new Line(point.subtract(normal2), new Point(-normal2.y, normal2.x)), corner = line1.intersect(line2); // Now measure the distance from the segment to the // intersection, which his half of the miter distance if (!corner || point.getDistance(corner) > miter) { addJoin(segment, 'bevel'); } else { add(corner); } break; } } } function addCap(segment, cap, t) { switch (cap) { case 'round': return addJoin(segment, cap); case 'butt': case 'square': // Calculate the corner points of butt and square caps var curve = segment.getCurve(), point = curve.getPoint(t), normal = curve.getNormal(t).normalize(radius); // For square caps, we need to step away from point in the // direction of the tangent, which is the rotated normal if (cap == 'square') point = point.add(normal.y, -normal.x); add(point.add(normal)); add(point.subtract(normal)); break; } } for (var i = 1, l = length - (closed ? 0 : 1); i < l; i++) { addJoin(segments[i], join); } if (closed) { addJoin(segments[0], join); } else { addCap(segments[0], cap, 0); addCap(segments[length - 1], cap, 1); } return bounds; }, /** * The bounding rectangle of the item including handles. */ getControlBounds: function() { // TODO: Implement! }, smooth: function() { var segments = this._segments; // This code is based on the work by Oleg V. Polikarpotchkin, // http://ov-p.spaces.live.com/blog/cns!39D56F0C7A08D703!147.entry // It was extended to support closed paths by averaging overlapping // beginnings and ends. The result of this approach is very close to // Polikarpotchkin's closed curve solution, but reuses the same // algorithm as for open paths, and is probably executing faster as // well, so it is preferred. var size = segments.length; if (size <= 2) return; var n = size; // Add overlapping ends for averaging handles in closed paths var overlap; if (this.closed) { // Overlap up to 4 points since averaging beziers affect the 4 // neighboring points overlap = Math.min(size, 4); n += Math.min(size, overlap) * 2; } else { overlap = 0; } var knots = []; for (var i = 0; i < size; i++) knots[i + overlap] = segments[i]._point; if (this.closed) { // If we're averaging, add the 4 last points again at the // beginning, and the 4 first ones at the end. for (var i = 0; i < overlap; i++) { knots[i] = segments[i + size - overlap]._point; knots[i + size + overlap] = segments[i]._point; } } else { n--; } // Calculate first Bezier control points // Right hand side vector var rhs = []; // Set right hand side X values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x; rhs[0] = knots[0].x + 2 * knots[1].x; rhs[n - 1] = 3 * knots[n - 1].x; // Get first control points X-values var x = getFirstControlPoints(rhs); // Set right hand side Y values for (var i = 1; i < n - 1; i++) rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y; rhs[0] = knots[0].y + 2 * knots[1].y; rhs[n - 1] = 3 * knots[n - 1].y; // Get first control points Y-values var y = getFirstControlPoints(rhs); if (this.closed) { // Do the actual averaging simply by linearly fading between the // overlapping values. for (var i = 0, j = size; i < overlap; i++, j++) { var f1 = (i / overlap); var f2 = 1 - f1; // Beginning x[j] = x[i] * f1 + x[j] * f2; y[j] = y[i] * f1 + y[j] * f2; // End var ie = i + overlap, je = j + overlap; x[je] = x[ie] * f2 + x[je] * f1; y[je] = y[ie] * f2 + y[je] * f1; } n--; } var handleIn = null; // Now set the calculated handles for (var i = overlap; i <= n - overlap; i++) { var segment = segments[i - overlap]; if (handleIn) segment.setHandleIn(handleIn.subtract(segment._point)); if (i < n) { segment.setHandleOut( new Point(x[i], y[i]).subtract(segment._point)); if (i < n - 1) handleIn = new Point( 2 * knots[i + 1].x - x[i + 1], 2 * knots[i + 1].y - y[i + 1]); else handleIn = new Point( (knots[n].x + x[n - 1]) / 2, (knots[n].y + y[n - 1]) / 2); } } if (closed && handleIn) { var segment = this._segments[0]; segment.setHandleIn(handleIn.subtract(segment._point)); } }, setContextStyles: function(context) { for (var i in styles) { var style; if (style = this[i]()) { context[styles[i]] = style; } } } }; }, new function() { // PostScript-style drawing commands function getCurrentSegment(that) { var segments = that._segments; if (segments.length == 0) throw('Use a moveTo() command first'); return segments[segments.length - 1]; } /** * Helper method that returns the current segment and checks if we need to * execute a moveTo() command first. */ return { moveTo: function() { var segment = new Segment(Point.read(arguments)); if (segment && !this._segments.length) this._add(segment); }, lineTo: function() { var segment = new Segment(Point.read(arguments)); if (segment) this._add(segment); }, /** * Adds a cubic bezier curve to the path, defined by two handles and a * to point. */ cubicCurveTo: function(handle1, handle2, to) { // First modify the current segment: var current = getCurrentSegment(this); // Convert to relative values: current.setHandleOut(new Point( handle1.x - current._point.x, handle1.y - current._point.y)); // And add the new segment, with handleIn set to c2 this._add( new Segment(to, handle2.subtract(to), new Point()) ); }, /** * Adds a quadratic bezier curve to the path, defined by a handle and a * to point. */ quadraticCurveTo: function(handle, to) { // This is exact: // If we have the three quad points: A E D, // and the cubic is A B C D, // B = E + 1/3 (A - E) // C = E + 1/3 (D - E) var current = getCurrentSegment(this), x1 = current._point.x, y1 = current._point.y; this.cubicCurveTo( handle.add(current._point.subtract(handle).multiply(1/3)), handle.add(to.subtract(handle).multiply(1/3)), to ); }, curveTo: function(through, to, parameter) { through = new Point(through); to = new Point(to); if (parameter == null) parameter = 0.5; var current = getCurrentSegment(this)._point; // handle = (through - (1 - t)^2 * current - t^2 * to) / // (2 * (1 - t) * t) var t1 = 1 - parameter; var handle = through.subtract( current.multiply(t1 * t1)).subtract( to.multiply(parameter * parameter)).divide( 2.0 * parameter * t1); if (handle.isNaN()) throw new Error( "Cannot put a curve through points with parameter=" + parameter); this.quadraticCurveTo(handle, to); }, arcTo: function(to, clockwise) { var through, to; // Get the start point: var current = getCurrentSegment(this); if (arguments[1] && typeof arguments[1] != 'boolean') { through = Point.read(arguments, 0, 1); to = Point.read(arguments, 1, 1); } else { to = Point.read(arguments, 0, 1); if (clockwise === null) clockwise = true; var middle = current._point.add(to).divide(2), step = middle.subtract(current._point); through = clockwise ? middle.subtract(-step.y, step.x) : middle.add(-step.y, step.x); } var x1 = current._point.x, x2 = through.x, x3 = to.x, y1 = current._point.y, y2 = through.y, y3 = to.y, f = x3 * x3 - x3 * x2 - x1 * x3 + x1 * x2 + y3 * y3 - y3 * y2 - y1 * y3 + y1 * y2, g = x3 * y1 - x3 * y2 + x1 * y2 - x1 * y3 + x2 * y3 - x2 * y1, m = g == 0 ? 0 : f / g, c = (m * y2) - x2 - x1 - (m * y1), d = (m * x1) - y1 - y2 - (x2 * m), e = (x1 * x2) + (y1 * y2) - (m * x1 * y2) + (m * x2 * y1), centerX = -c / 2, centerY = -d / 2, radius = Math.sqrt(centerX * centerX + centerY * centerY - e), // Note: reversing the Y equations negates the angle to adjust // for the upside down coordinate system. angle = Math.atan2(centerY - y1, x1 - centerX), middle = Math.atan2(centerY - y2, x2 - centerX), extent = Math.atan2(centerY - y3, x3 - centerX), diff = middle - angle; if (diff < -Math.PI) diff += Math.PI * 2; else if (diff > Math.PI) diff -= Math.PI * 2; extent -= angle; if (extent <= 0.0) extent += Math.PI * 2; if (diff < 0) extent = Math.PI * 2 - extent; else extent = -extent; angle = -angle; var ext = Math.abs(extent), arcSegs; if (ext >= 2 * Math.PI) arcSegs = 4; else arcSegs = Math.ceil(ext * 2 / Math.PI); var inc = extent; if (inc > 2 * Math.PI) inc = 2 * Math.PI; else if (inc < -2 * Math.PI) inc = -2 * Math.PI; inc /= arcSegs; var halfInc = inc / 2, z = 4 / 3 * Math.sin(halfInc) / (1 + Math.cos(halfInc)); for (var i = 0; i <= arcSegs; i++) { var relx = Math.cos(angle), rely = Math.sin(angle), pt = new Point(centerX + relx * radius, centerY + rely * radius); var out; if (i == arcSegs) { out = null; } else { out = new Point( centerX + (relx - z * rely) * radius - pt.x, centerY + (rely + z * relx) * radius - pt.y); } if (i == 0) { // Modify startSegment current.setHandleOut(out); } else { // Add new Segment var handleIn = new Point( centerX + (relx + z * rely) * radius - pt.x, centerY + (rely - z * relx) * radius - pt.y); this._add(new Segment(pt, handleIn, out)); } angle += inc; } }, lineBy: function() { var vector = Point.read(arguments); if (vector) { var current = getCurrentSegment(this); this.lineTo(current._point.add(vector)); } }, curveBy: function(throughVector, toVector, parameter) { throughVector = Point.read(throughVector); toVector = Point.read(toVector); var current = getCurrentSegment(this)._point; this.curveTo(current.add(throughVector), current.add(toVector), parameter); }, arcBy: function(throughVector, toVector) { throughVector = Point.read(throughVector); toVector = Point.read(toVector); var current = getCurrentSegment(this)._point; this.arcBy(current.add(throughVector), current.add(toVector)); }, closePath: function() { this.closed = ture; } }; });