new function() { var MAX_RECURSION = 20; var MAX_ITERATION = 20; /** * This method is analogous to paperjs#PathItem.getIntersections, but calls * Curve.getIntersections2 instead. */ PathItem.prototype.getIntersections2 = function(path) { // First check the bounds of the two paths. If they don't intersect, // we don't need to iterate through their curves. if (!this.getBounds().touches(path.getBounds())) return []; var locations = [], curves1 = this.getCurves(), curves2 = path.getCurves(), length2 = curves2.length, values2 = []; for (var i = 0; i < length2; i++) values2[i] = curves2[i].getValues(); for (var i = 0, l = curves1.length; i < l; i++) { var curve1 = curves1[i], values1 = curve1.getValues(); for (var j = 0; j < length2; j++) Curve.getIntersections2(values1, values2[j], curve1, curves2[j], locations); } return locations; }; /** * This method is analogous to paperjs#Curve.getIntersections */ Curve.getIntersections2 = function(v1, v2, curve1, curve2, locations) { var linear1 = Curve.isLinear(v1), linear2 = Curve.isLinear(v2); // Determine the correct intersection method based on values of linear1 & 2: (linear1 && linear2 ? getLineLineIntersection : linear1 || linear2 ? getCurveLineIntersections : getCurveIntersections)(v1, v2, curve1, curve2, locations); return locations; }; function addLocation(locations, curve1, parameter, point, curve2) { // Avoid duplicates when hitting segments (closed paths too) var first = locations[0], last = locations[locations.length - 1]; if ((!first || !point.equals(first._point)) && (!last || !point.equals(last._point))) locations.push(new CurveLocation(curve1, parameter, point, curve2)); } function getCurveIntersections(v1, v2, curve1, curve2, locations, range1, range2, recursion) { // NOTE: range1 and range1 are only used for recusion recursion = (recursion || 0) + 1; // Avoid endless recursion. // Perhaps we should fall back to a more expensive method after this, but // so far endless recursion happens only when there is no real intersection // and the infinite fatline continue to intersect with the other curve // outside its bounds! if (recursion > MAX_RECURSION) return; // Set up the parameter ranges. range1 = range1 || [ 0, 1 ]; range2 = range2 || [ 0, 1 ]; // Get the clipped parts from the original curve, to avoid cumulative errors var p1 = Curve.getPart(v1, range1[0], range1[1]); var p2 = Curve.getPart(v2, range2[0], range2[1]); // markCurve(p1, '#f0f', true); // markCurve(p2, '#0ff', false); var iteration = 0; // Loop until both parameter range converge. We have to handle the // degenerate case seperately, where fat-line clipping can become // numerically unstable when one of the curves has converged to a point and // the other hasn't. while (iteration++ < MAX_ITERATION && (Math.abs(range1[1] - range1[0]) > /*#=*/ Numerical.TOLERANCE || Math.abs(range2[1] - range2[0]) > /*#=*/ Numerical.TOLERANCE)) { // First we clip v2 with v1's fat-line var range = range2.slice(); var intersects1 = clipFatLine(p1, p2, range), intersects2 = 0; // Stop if there are no possible intersections if (intersects1 === 0) break; if (intersects1 > 0) { // Get the clipped parts from the original v2, to avoid cumulative // errors ...and reuse some objects. range2 = range; p2 = Curve.getPart(v2, range2[0], range2[1]); // markCurve(p2, '#0ff', false); // Next we clip v1 with nuv2's fat-line intersects2 = clipFatLine(p2, p1, range = range1.slice()); // Stop if there are no possible intersections if (intersects2 === 0) break; if (intersects1 > 0) { // Get the clipped parts from the original v2, to avoid // cumulative errors range1 = range; p1 = Curve.getPart(v1, range1[0], range1[1]); } // markCurve(p1, '#f0f', true); } // Get the clipped parts from the original v1 // Check if there could be multiple intersections if (intersects1 < 0 || intersects2 < 0) { // Subdivide the curve which has converged the least from the // original range [0,1], which would be the curve with the largest // parameter range after clipping if (range1[1] - range1[0] > range2[1] - range2[0]) { // subdivide v1 and recurse var t = (range1[0] + range1[1]) / 2; getCurveIntersections(v1, v2, curve1, curve2, locations, [ range1[0], t ], range2, recursion); getCurveIntersections(v1, v2, curve1, curve2, locations, [ t, range1[1] ], range2, recursion); break; } else { // subdivide v2 and recurse var t = (range2[0] + range2[1]) / 2; getCurveIntersections(v1, v2, curve1, curve2, locations, range1, [ range2[0], t ], recursion); getCurveIntersections(v1, v2, curve1, curve2, locations, range1, [ t, range2[1] ], recursion); break; } } // We need to bailout of clipping and try a numerically stable method if // any of the following are true. // 1. One of the parameter ranges is converged to a point. // 2. Both of the parameter ranges have converged reasonably well // (according to Numerical.TOLERANCE). // 3. One of the parameter range is converged enough so that it is // *flat enough* to calculate line curve intersection implicitly. // // Check if one of the parameter range has converged completely to a // point. Now things could get only worse if we iterate more for the // other curve to converge if it hasn't yet happened so. var converged1 = (Math.abs(range1[1] - range1[0]) < /*#=*/ Numerical.EPSILON), converged2 = (Math.abs(range2[1] - range2[0]) < /*#=*/ Numerical.EPSILON); if (converged1 || converged2) { addLocation(locations, curve1, null, converged1 ? curve1.getPointAt(range1[0], true) : curve2.getPointAt(range2[0], true), curve2); break; } if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE && Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) { // Both parameter ranges have converged. addLocation(locations, curve1, range1[0], curve1.getPointAt(range1[0], true), curve2); break; } // see if either or both of the curves are flat enough to be treated // as lines. var flat1 = Curve.isFlatEnough(p1, /*#=*/ Numerical.TOLERANCE), flat2 = Curve.isFlatEnough(p2, /*#=*/ Numerical.TOLERANCE); if (flat1 && flat2) { getLineLineIntersection(p1, p2, curve1, curve2, locations); break; } if (flat1 || flat2) { // Use curve line intersection method while specifying which // curve to be treated as line getCurveLineIntersections(p1, p2, curve1, curve2, locations, flat1); break; } } } /** * Clip curve V2 with fat-line of v1 * @param {Array} v1 section of the first curve, for which we will make a * fat-line * @param {Array} v2 section of the second curve; we will clip this curve with * the fat-line of v1 * @param {Object} range2 the parameter range of v2 * @return {Number} 0: no Intersection, 1: one intersection, -1: more than one * ntersection */ function clipFatLine(v1, v2, range2) { // first curve, P var p0x = v1[0], p0y = v1[1], p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5], p3x = v1[6], p3y = v1[7], // second curve, Q q0x = v2[0], q0y = v2[1], q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5], q3x = v2[6], q3y = v2[7], // Calculate the fat-line L for P is the baseline l and two // offsets which completely encloses the curve P. d1 = getSignedDistance(p0x, p0y, p3x, p3y, p1x, p1y) || 0, d2 = getSignedDistance(p0x, p0y, p3x, p3y, p2x, p2y) || 0, factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9, dmin = factor * Math.min(0, d1, d2), dmax = factor * Math.max(0, d1, d2), // Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the // distance of Q from the baseline l of the fat-line, ti is equally // spaced in [0, 1] dq0 = getSignedDistance(p0x, p0y, p3x, p3y, q0x, q0y), dq1 = getSignedDistance(p0x, p0y, p3x, p3y, q1x, q1y), dq2 = getSignedDistance(p0x, p0y, p3x, p3y, q2x, q2y), dq3 = getSignedDistance(p0x, p0y, p3x, p3y, q3x, q3y), // Find the minimum and maximum distances from l, this is useful for // checking whether the curves intersect with each other or not. mindist = Math.min(dq0, dq1, dq2, dq3), maxdist = Math.max(dq0, dq1, dq2, dq3); // If the fatlines don't overlap, we have no intersections! if (dmin > maxdist || dmax < mindist) return 0; var tmp; if (dq3 < dq0) { tmp = dmin; dmin = dmax; dmax = tmp; } var Dt = getConvexHull(dq0, dq1, dq2, dq3); // Calculate the convex hull for non-parametric bezier curve D(ti, di(t)) // Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax // for the coorresponding t values (tmin, tmax): Portions of curve v2 before // tmin and after tmax can safely be clipped away var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m; var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2; for (i = 0, len = Dt.length; i < len; i++) { Dtl = Dt[i]; dtlx1 = Dtl[0]; dtly1 = Dtl[1]; dtlx2 = Dtl[2]; dtly2 = Dtl[3]; if (dtly2 < dtly1) { tmp = dtly2; dtly2 = dtly1; dtly1 = tmp; tmp = dtlx2; dtlx2 = dtlx1; dtlx1 = tmp; } // we know that (dtlx2 - dtlx1) is never 0 inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1); if (dmin >= dtly1 && dmin <= dtly2) { ixdx = dtlx1 + (dmin - dtly1) / inv_m; if (ixdx < tmin) tmin = ixdx; if (ixdx > tmaxdmin) tmaxdmin = ixdx; } if (dmax >= dtly1 && dmax <= dtly2) { ixdx = dtlx1 + (dmax - dtly1) / inv_m; if (ixdx > tmax) tmax = ixdx; if (ixdx < tmin) tmin = 0; } } // Return the parameter values for v2 for which we can be sure that the // intersection with v1 lies within. if (tmin !== Infinity && tmax !== -Infinity) { var mindmin = Math.min(dmin, dmax); var mindmax = Math.max(dmin, dmax); if (dq3 > mindmin && dq3 < mindmax) tmax = 1; if (dq0 > mindmin && dq0 < mindmax) tmin = 0; if (tmaxdmin > tmax) tmax = 1; // tmin and tmax are within the range (0, 1). We need to project it to // the original parameter range for v2. var v2tmin = range2[0]; var tdiff = (range2[1] - v2tmin); range2[0] = v2tmin + tmin * tdiff; range2[1] = v2tmin + tmax * tdiff; // If the new parameter range fails to converge by atleast 20% of the // original range, possibly we have multiple intersections. We need to // subdivide one of the curves. if ((tdiff - (range2[1] - range2[0])) / tdiff >= 0.2) return 1; } // TODO: Try checking with a perpendicular fatline to see if the curves // overlap if it is any faster than this if (Curve.getBounds(v1).touches(Curve.getBounds(v2))) return -1; return 0; } /** * Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)). * The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for * di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the * curve are already sorted in the X axis in the increasing order. Calculating * convex-hull is much easier than a set of arbitrary points. */ function getConvexHull(dq0, dq1, dq2, dq3) { var distq1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1); var distq2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2); var hull; // Check if [1/3, dq1] and [2/3, dq2] are on the same side of line // [0,dq0, 1,dq3] if (distq1 * distq2 < 0) { // dq1 and dq2 lie on different sides on [0, q0, 1, q3] // Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of // the convexhull so we are pretty much done here. hull = [ [ 0, dq0, 1 / 3, dq1 ], [ 1 / 3, dq1, 1, dq3 ], [ 2 / 3, dq2, 0, dq0 ], [ 1, dq3, 2 / 3, dq2 ] ]; } else { // dq1 and dq2 lie on the same sides on [0, q0, 1, q3]. c-hull can be a // triangle or a quadrilateral and line [0, q0, 1, q3] is part of the // c-hull. Check if the hull is a triangle or a quadrilateral var dqmin, dqmax, dqapex1, dqapex2; distq1 = Math.abs(distq1); distq2 = Math.abs(distq2); var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny; if (distq1 > distq2) { dqmin = [ 2 / 3, dq2 ]; dqmax = [ 1 / 3, dq1 ]; // apex is dq3 and the other apex point is dq0 vector // dqapex->dqapex2 or base vector which is already part of c-hull vqa1a2x = 1; vqa1a2y = dq3 - dq0; // vector dqapex->dqmax vqa1Maxx = 2 / 3; vqa1Maxy = dq3 - dq1; // vector dqapex->dqmin vqa1Minx = 1 / 3; vqa1Miny = dq3 - dq2; } else { dqmin = [ 1 / 3, dq1 ]; dqmax = [ 2 / 3, dq2 ]; // apex is dq0 in this case, and the other apex point is dq3 vector // dqapex->dqapex2 or base vector which is already part of c-hull vqa1a2x = -1; vqa1a2y = dq0 - dq3; // vector dqapex->dqmax vqa1Maxx = -2 / 3; vqa1Maxy = dq0 - dq2; // vector dqapex->dqmin vqa1Minx = -1 / 3; vqa1Miny = dq0 - dq1; } // Compare cross products of these vectors to determine, if // point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ] var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx; var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx; if (vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0) { // Point [2/3, dq2] is inside the triangle and c-hull is a triangle hull = [ [ 0, dq0, dqmax[0], dqmax[1] ], [ dqmax[0], dqmax[1], 1, dq3 ], [ 1, dq3, 0, dq0 ] ]; } else { // Convexhull is a quadrilateral and we need all lines in the // correct order where line [0, q0, 1, q3] is part of the c-hull hull = [ [ 0, dq0, 1 / 3, dq1 ], [ 1 / 3, dq1, 2 / 3, dq2 ], [ 2 / 3, dq2, 1, dq3 ], [ 1, dq3, 0, dq0 ] ]; } } return hull; } // This is basically an "unrolled" version of #Line.getDistance() with sign // May be a static method could be better! function getSignedDistance(a1x, a1y, a2x, a2y, bx, by) { var m = (a2y - a1y) / (a2x - a1x), b = a1y - (m * a1x); return (by - (m * bx) - b) / Math.sqrt(m * m + 1); } /** * Intersections between curve and line becomes rather simple here mostly * because of Numerical class. We can rotate the curve and line so that the line * is on X axis, and solve the implicit equations for X axis and the curve */ function getCurveLineIntersections(v1, v2, curve1, curve2, locations, flip) { if (flip === undefined) flip = Curve.isLinear(v1); var vc = flip ? v2 : v1, vl = flip ? v1 : v2, l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7], // Rotate both the curve and line around l1 so that line is on x axis lvx = l2x - l1x, lvy = l2y - l1y, // Angle with x axis (1, 0) angle = Math.atan2(-lvy, lvx), sin = Math.sin(angle), cos = Math.cos(angle), // (rl1x, rl1y) = (0, 0) rl2x = lvx * cos - lvy * sin, rl2y = lvy * cos + lvx * sin, vcr = []; for(var i = 0; i < 8; i += 2) { var x = vc[i] - l1x, y = vc[i + 1] - l1y; vcr.push( x * cos - y * sin, y * cos + x * sin); } var roots = [], count = Curve.solveCubic(vcr, 1, 0, roots); // NOTE: count could theoretically be -1 for inifnite solutions, although // that should only happen with lines, in which case we should not be here. for (var i = 0; i < count; i++) { var t = roots[i]; if (t >= 0 && t <= 1) { var point = Curve.evaluate(vcr, t, true, 0); // We do have a point on the infinite line. Check if it falls on the // line *segment*. if (point.x >= 0 && point.x <= rl2x) addLocation(locations, flip ? curve2 : curve1, // The actual intersection point t, Curve.evaluate(vc, t, true, 0), flip ? curve1 : curve2); } } } function getLineLineIntersection(v1, v2, curve1, curve2, locations) { var point = Line.intersect( v1[0], v1[1], v1[6], v1[7], v2[0], v2[1], v2[6], v2[7], false); // Passing null for parameter leads to lazy determination of parameter // values in CurveLocation#getParameter() only once they are requested. if (point) addLocation(locations, curve1, null, point, curve2); } };