/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /* * Boolean Geometric Path Operations * * This is mostly written for clarity and compatibility, not optimised for * performance, and has to be tested heavily for stability. * * Supported * - paperjs Path and CompoundPath objects * - Boolean Union * - Boolean Intersection * - Boolean Subtraction * - Resolving a self-intersecting Path * * Not supported yet * - Boolean operations on self-intersecting Paths * - Paths are clones of each other that ovelap exactly on top of each other! * * @author Harikrishnan Gopalakrishnan * http://hkrish.com/playground/paperjs/booleanStudy.html */ PathItem.inject(new function() { function splitPath(intersections, collectOthers) { // Sort intersections by paths ids, curve index and parameter, so we // can loop through all intersections, divide paths and never need to // readjust indices. intersections.sort(function(loc1, loc2) { var path1 = loc1.getPath(), path2 = loc2.getPath(); return path1 === path2 // We can add parameter (0 <= t <= 1) to index (a integer) // to compare both at the same time ? (loc1.getIndex() + loc1.getParameter()) - (loc2.getIndex() + loc2.getParameter()) : path1._id - path2._id; }); var others = collectOthers && []; for (var i = intersections.length - 1; i >= 0; i--) { var loc = intersections[i], other = loc.getIntersection(), curve = loc.divide(), // When the curve doesn't need to be divided since t = 0, 1, // #divide() returns null and we can use the existing segment. segment = curve && curve.getSegment1() || loc.getSegment(); if (others) others.push(other); other.__segment = segment; segment._ixPair = other; } return others; } /** * To deal with a HTML canvas requirement where CompoundPaths' child contours * has to be of different winding direction for correctly filling holes. * But if some individual countours are disjoint, i.e. islands, we have to * reorient them so that * the holes have opposit winding direction (already handled by paperjs) * islands has to have same winding direction (as the first child of the path) * * Does NOT handle selfIntersecting CompoundPaths. * * @param {CompoundPath} path - Input CompoundPath, Note: This path could be modified if need be. * @return {boolean} the winding direction of the base contour(true if clockwise) */ function reorientCompoundPath(path) { if (!(path instanceof CompoundPath)) { path.closed = true; return path.clockwise; } var children = path.children, len = children.length, baseWinding; var bounds = new Array(len); var tmparray = new Array(len); baseWinding = children[0].clockwise; // Omit the first path for (i = 0; i < len; i++) { children[i].closed = true; bounds[i] = children[i].bounds; tmparray[i] = 0; } for (i = 0; i < len; i++) { var p1 = children[i]; for (j = 0; j < len; j++) { var p2 = children[j]; if (i !== j && bounds[i].contains(bounds[j])) { tmparray[j]++; } } } for (i = 1; i < len; i++) { if (tmparray[i] % 2 === 0) { children[i].clockwise = baseWinding; } } return baseWinding; } function reversePath(path) { var baseWinding; if (path instanceof CompoundPath) { var children = path.children, i, len; for (i = 0, len = children.length; i < len; i++) { children[i].reverse(); children[i]._curves = null; } baseWinding = children[0].clockwise; } else { path.reverse(); baseWinding = path.clockwise; path._curves = null; } return baseWinding; } function computeBoolean(path1, path2, operator, subtract, _cache) { var _path1, _path2, path1Clockwise, path2Clockwise; var ixs, path1Id, path2Id; // We do not modify the operands themselves // The result might not belong to the same type // i.e. subtraction(A:Path, B:Path):CompoundPath etc. _path1 = path1.clone(); _path2 = path2.clone(); _path1.style = _path2.style = null; _path1.selected = _path2.selected = false; path1Clockwise = reorientCompoundPath(_path1); path2Clockwise = reorientCompoundPath(_path2); path1Id = _path1.id; path2Id = _path2.id; // Calculate all the intersections ixs = _cache && _cache.intersections || _path1.getIntersections(_path2); // if we have a empty _cache object as an operand, // skip calculating boolean and cache the intersections if (_cache && !_cache.intersections) return _cache.intersections = ixs; splitPath(splitPath(ixs, true)); path1Id = _path1.id; path2Id = _path2.id; // Do operator specific calculations before we begin if (subtract) path2Clockwise = reversePath(_path2); var i, j, len, path, crv; var paths = []; if (_path1 instanceof CompoundPath) { paths = paths.concat(_path1.children); } else { paths = [ _path1 ]; } if (_path2 instanceof CompoundPath) { paths = paths.concat(_path2.children); } else { paths.push(_path2); } // step 1: discard invalid links according to the boolean operator var lastNode, firstNode, nextNode, midPoint, insidePath1, insidePath2; var thisId, thisWinding, contains; for (i = 0, len = paths.length; i < len; i++) { insidePath1 = insidePath2 = false; path = paths[i]; thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id; thisWinding = path.clockwise; lastNode = path.lastSegment; firstNode = path.firstSegment; nextNode = null; while (nextNode !== firstNode) { nextNode = (nextNode)? nextNode.previous: lastNode; crv = nextNode.curve; midPoint = crv.getPoint(0.5); if (thisId !== path1Id) { contains = _path1. contains(midPoint); insidePath1 = thisWinding === path1Clockwise || subtract ? contains : contains && !testOnCurve(_path1, midPoint); } if (thisId !== path2Id) { contains = _path2.contains(midPoint); insidePath2 = thisWinding === path2Clockwise ? contains : contains && !testOnCurve(_path2, midPoint); } if (operator(thisId === path1Id, insidePath1, insidePath2)) { crv._INVALID = true; // markPoint(midPoint, '+'); } } } // Final step: Retrieve the resulting paths from the graph var boolResult = new CompoundPath(); var node, nuNode, nuPath, nodeList = [], handle; for (i = 0, len = paths.length; i < len; i++) { nodeList = nodeList.concat(paths[i].segments); } for (i = 0, len = nodeList.length; i < len; i++) { node = nodeList[i]; if (node.curve._INVALID || node._visited) { continue; } path = node.path; thisId = (path.parent instanceof CompoundPath)? path.parent.id : path.id; thisWinding = path.clockwise; nuPath = new Path(); firstNode = null; firstNode_ix = null; if (node.previous.curve._INVALID) { node.handleIn = (node._ixPair)? node._ixPair.getIntersection().__segment.handleIn : [ 0, 0 ]; } while (node && !node._visited && (node !== firstNode && node !== firstNode_ix)) { node._visited = true; firstNode = (firstNode)? firstNode: node; firstNode_ix = (!firstNode_ix && firstNode._ixPair)? firstNode._ixPair.getIntersection().__segment: firstNode_ix; // node._ixPair is this node's intersection CurveLocation object // node._ixPair.getIntersection() is the other CurveLocation object this node intersects with nextNode = (node._ixPair && node.curve._INVALID)? node._ixPair.getIntersection().__segment : node; if (node._ixPair) { nextNode._visited = true; nuNode = new Segment(node.point, node.handleIn, nextNode.handleOut); nuPath.add(nuNode); node = nextNode; path = node.path; thisWinding = path.clockwise; } else { nuPath.add(node); } node = node.next; } if (nuPath.segments.length > 1) { // avoid stray segments and incomplete paths if (nuPath.segments.length > 2 || !nuPath.curves[0].isLinear()) { nuPath.closed = true; boolResult.addChild(nuPath, true); } } } // Delete the proxies _path1.remove(); _path2.remove(); // And then, we are done. return boolResult.reduce(); } function testOnCurve(path, point) { var res = 0; var crv = path.getCurves(); var i = 0; var bounds = path.bounds; if (bounds && bounds.contains(point)) { for(i = 0; i < crv.length && !res; i++) { var crvi = crv[i]; if (crvi.bounds.contains(point) && crvi.getParameterOf(point)) { res = 1; } } } return res; } // A boolean operator is a binary operator function of the form // function(isPath1, isInPath1, isInPath2) // // Operators return true if a curve in the operands is to be removed, // and they aare called for each curve segment in the graph after all the // intersections between the operands are calculated and curves in the // operands were split at intersections. // // The boolean operator return a Boolean value indicating whether to // keep the curve or not. // return true - discard the curve // return false - keep the curve return { unite: function(path, _cache) { return computeBoolean(this, path, function(isPath1, isInPath1, isInPath2) { return isInPath1 || isInPath2; }, false, _cache); }, intersect: function(path, _cache) { return computeBoolean(this, path, function(isPath1, isInPath1, isInPath2) { return !(isInPath1 || isInPath2); }, false, _cache); }, subtract: function(path, _cache) { return computeBoolean(this, path, function(isPath1, isInPath1, isInPath2) { return isPath1 && isInPath2 || !isPath1 && !isInPath1; }, true, _cache); }, // Compound boolean operators combine the basic boolean operations such // as union, intersection, subtract etc. // TODO: cache the split objects and find a way to properly clone them! // a.k.a. eXclusiveOR exclude: function(path) { return new Group([this.subtract(path), path.subtract(this)]); }, // Divide path1 by path2 divide: function(path) { return new Group([this.subtract(path), this.intersect(path)]); } }; });