/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey * http://scratchdisk.com/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /* * Boolean Geometric Path Operations * * This is mostly written for clarity and compatibility, not optimised for * performance, and has to be tested heavily for stability. * * Supported * - Path and CompoundPath items * - Boolean Union * - Boolean Intersection * - Boolean Subtraction * - Resolving a self-intersecting Path * * Not supported yet * - Boolean operations on self-intersecting Paths * - Paths are clones of each other that ovelap exactly on top of each other! * * @author Harikrishnan Gopalakrishnan * http://hkrish.com/playground/paperjs/booleanStudy.html */ PathItem.inject(new function() { // Boolean operators return true if a curve with the given winding // contribution contributes to the final result or not. They are called // for each curve in the graph after curves in the operands are // split at intersections. function computeBoolean(path1, path2, operator, subtract) { // Creates a cloned version of the path that we can modify freely, with // its matrix applied to its geometry. Calls #reduce() to simplify // compound paths and remove empty curves, and #reorient() to make sure // all paths have correct winding direction. function preparePath(path) { return path.clone(false).reduce().reorient().transform(null, true); } // We do not modify the operands themselves // The result might not belong to the same type // i.e. subtraction(A:Path, B:Path):CompoundPath etc. var _path1 = preparePath(path1); _path2 = path2 && path1 !== path2 && preparePath(path2); // Do operator specific calculations before we begin // Make both paths at clockwise orientation, except when subtract = true // We need both paths at opposite orientation for subtraction. if (!_path1.isClockwise()) _path1.reverse(); if (_path2 && !(subtract ^ _path2.isClockwise())) _path2.reverse(); // Split curves at intersections on both paths. Note that for self // intersection, _path2 will be null and getIntersections() handles it. splitPath(_path1.getIntersections(_path2, true)); var chain = [], windings = [], lengths = [], segments = [], // Aggregate of all curves in both operands, monotonic in y monoCurves = []; function collect(paths) { for (var i = 0, l = paths.length; i < l; i++) { var path = paths[i]; segments.push.apply(segments, path._segments); monoCurves.push.apply(monoCurves, path._getMonoCurves()); } } // Collect all segments and monotonic curves collect(_path1._children || [_path1]); if (_path2) collect(_path2._children || [_path2]); // Propagate the winding contribution. Winding contribution of curves // does not change between two intersections. // First, sort all segments with an intersection to the begining. segments.sort(function(a, b) { var _a = a._intersection, _b = b._intersection; return !_a && !_b || _a && _b ? 0 : _a ? -1 : 1; }); for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; if (segment._winding != null) continue; // Here we try to determine the most probable winding number // contribution for this curve-chain. Once we have enough confidence // in the winding contribution, we can propagate it until the // intersection or end of a curve chain. chain.length = windings.length = lengths.length = 0; var totalLength = 0, startSeg = segment; do { chain.push(segment); lengths.push(totalLength += segment.getCurve().getLength()); segment = segment.getNext(); } while (segment && !segment._intersection && segment !== startSeg); // Select the median winding of three random points along this curve // chain, as a representative winding number. The random selection // gives a better chance of returning a correct winding than equally // dividing the curve chain, with the same (amortised) time. for (var j = 0; j < 3; j++) { var length = totalLength * Math.random(), amount = lengths.length; k = 0; do { if (lengths[k] >= length) { if (k > 0) length -= lengths[k - 1]; break; } } while (++k < amount); var curve = chain[k].getCurve(), point = curve.getPointAt(length), hor = curve.isHorizontal(), path = curve._path; if (path._parent instanceof CompoundPath) path = path._parent; // While subtracting, we need to omit this curve if this // curve is contributing to the second operand and is outside // the first operand. windings[j] = subtract && _path2 && (path === _path1 && _path2._getWinding(point, hor) || path === _path2 && !_path1._getWinding(point, hor)) ? 0 : getWinding(point, monoCurves, hor); } windings.sort(); // Assign the median winding to the entire curve chain. var winding = windings[1]; for (var j = chain.length - 1; j >= 0; j--) chain[j]._winding = winding; } // Trace closed contours and insert them into the result. var result = new CompoundPath(); result.addChildren(tracePaths(segments, operator), true); // Delete the proxies _path1.remove(); if (_path2) _path2.remove(); // And then, we are done. return result.reduce(); } /** * Private method for splitting a PathItem at the given intersections. * The routine works for both self intersections and intersections * between PathItems. * @param {CurveLocation[]} intersections Array of CurveLocation objects */ function splitPath(intersections) { var TOLERANCE = /*#=*/ Numerical.TOLERANCE, linearSegments; function resetLinear() { // Reset linear segments if they were part of a linear curve // and if we are done with the entire curve. for (var i = 0, l = linearSegments.length; i < l; i++) { var segment = linearSegments[i]; // FIXME: Don't reset the appropriate handle if the intersection // was on t == 0 && t == 1. segment._handleOut.set(0, 0); segment._handleIn.set(0, 0); } } for (var i = intersections.length - 1, curve, prevLoc; i >= 0; i--) { var loc = intersections[i], t = loc._parameter; // Check if we are splitting same curve multiple times if (prevLoc && prevLoc._curve === loc._curve // Avoid dividing with zero && prevLoc._parameter > 0) { // Scale parameter after previous split. t /= prevLoc._parameter; } else { if (linearSegments) resetLinear(); curve = loc._curve; linearSegments = curve.isLinear() && []; } var newCurve, segment; // Split the curve at t, while ignoring linearity of curves if (newCurve = curve.divide(t, true, true)) { segment = newCurve._segment1; curve = newCurve.getPrevious(); } else { segment = t < TOLERANCE ? curve._segment1 : t > 1 - TOLERANCE ? curve._segment2 : curve.getPartLength(0, t) < curve.getPartLength(t, 1) ? curve._segment1 : curve._segment2; } // Link the new segment with the intersection on the other curve segment._intersection = loc.getIntersection(); loc._segment = segment; if (linearSegments) linearSegments.push(segment); prevLoc = loc; } if (linearSegments) resetLinear(); } /** * Private method that returns the winding contribution of the given point * with respect to a given set of monotone curves. */ function getWinding(point, curves, horizontal, testContains) { var TOLERANCE = /*#=*/ Numerical.TOLERANCE, x = point.x, y = point.y, windLeft = 0, windRight = 0, roots = [], abs = Math.abs, MAX = 1 - TOLERANCE; // Absolutely horizontal curves may return wrong results, since // the curves are monotonic in y direction and this is an // indeterminate state. if (horizontal) { var yTop = -Infinity, yBottom = Infinity, yBefore = y - TOLERANCE, yAfter = y + TOLERANCE; // Find the closest top and bottom intercepts for the same vertical // line. for (var i = 0, l = curves.length; i < l; i++) { var values = curves[i].values; if (Curve.solveCubic(values, 0, x, roots, 0, 1) > 0) { for (var j = roots.length - 1; j >= 0; j--) { var y0 = Curve.evaluate(values, roots[j], 0).y; if (y0 < yBefore && y0 > yTop) { yTop = y0; } else if (y0 > yAfter && y0 < yBottom) { yBottom = y0; } } } } // Shift the point lying on the horizontal curves by // half of closest top and bottom intercepts. yTop = (yTop + y) / 2; yBottom = (yBottom + y) / 2; if (yTop > -Infinity) windLeft = getWinding(new Point(x, yTop), curves); if (yBottom < Infinity) windRight = getWinding(new Point(x, yBottom), curves); } else { var xBefore = x - TOLERANCE, xAfter = x + TOLERANCE; // Find the winding number for right side of the curve, inclusive of // the curve itself, while tracing along its +-x direction. for (var i = 0, l = curves.length; i < l; i++) { var curve = curves[i], values = curve.values, winding = curve.winding, next = curve.next; // Since the curves are monotone in y direction, we can just // compare the endpoints of the curve to determine if the // ray from query point along +-x direction will intersect // the monotone curve. Results in quite significant speedup. if (winding && (winding === 1 && y >= values[1] && y <= values[7] || y >= values[7] && y <= values[1]) && Curve.solveCubic(values, 1, y, roots, 0, // If the next curve is horizontal, we have to include // the end of this curve to make sure we won't miss an // intercept. !next.winding && next.values[1] === y ? 1 : MAX) === 1){ var t = roots[0], x0 = Curve.evaluate(values, t, 0).x, slope = Curve.evaluate(values, t, 1).y; // Take care of cases where the curve and the preceeding // curve merely touches the ray towards +-x direction, but // proceeds to the same side of the ray. This essentially is // not a crossing. if (abs(slope) < TOLERANCE && !Curve.isLinear(values) || t < TOLERANCE && slope * Curve.evaluate( curve.previous.values, t, 1).y < 0) { if (testContains && x0 >= xBefore && x0 <= xAfter) { ++windLeft; ++windRight; } } else if (x0 <= xBefore) { windLeft += winding; } else if (x0 >= xAfter) { windRight += winding; } } } } return Math.max(abs(windLeft), abs(windRight)); } /** * Private method to trace closed contours from a set of segments according * to a set of constraints—winding contribution and a custom operator. * * @param {Segment[]} segments Array of 'seed' segments for tracing closed * contours * @param {Function} the operator function that receives as argument the * winding number contribution of a curve and returns a boolean value * indicating whether the curve should be included in the final contour or * not * @return {Path[]} the contours traced */ function tracePaths(segments, operator, selfOp) { // Choose a default operator which will return all contours operator = operator || function() { return true; }; var paths = [], // Values for getTangentAt() that are almost 0 and 1. // TODO: Correctly support getTangentAt(0) / (1)? ZERO = 1e-3, ONE = 1 - 1e-3; for (var i = 0, seg, startSeg, l = segments.length; i < l; i++) { seg = startSeg = segments[i]; if (seg._visited || !operator(seg._winding)) continue; var path = new Path(Item.NO_INSERT), inter = seg._intersection, startInterSeg = inter && inter._segment, added = false, // Wether a first segment as added already dir = 1; do { var handleIn = dir > 0 ? seg._handleIn : seg._handleOut, handleOut = dir > 0 ? seg._handleOut : seg._handleIn, interSeg; // If the intersection segment is valid, try switching to // it, with an appropriate direction to continue traversal. // Else, stay on the same contour. if (added && (!operator(seg._winding) || selfOp) && (inter = seg._intersection) && (interSeg = inter._segment) && interSeg !== startSeg) { if (selfOp) { // Switch to the intersection segment, if we are // resolving self-Intersections. seg._visited = interSeg._visited; seg = interSeg; dir = 1; } else { var c1 = seg.getCurve(); if (dir > 0) c1 = c1.getPrevious(); var t1 = c1.getTangentAt(dir < 1 ? ZERO : ONE, true), // Get both curves at the intersection (except the // entry curves). c4 = interSeg.getCurve(), c3 = c4.getPrevious(), // Calculate their winding values and tangents. t3 = c3.getTangentAt(ONE, true), t4 = c4.getTangentAt(ZERO, true), // Cross product of the entry and exit tangent // vectors at the intersection, will let us select // the correct countour to traverse next. w3 = t1.cross(t3), w4 = t1.cross(t4); if (w3 * w4 !== 0) { // Do not attempt to switch contours if we aren't // sure that there is a possible candidate. var curve = w3 < w4 ? c3 : c4, nextCurve = operator(curve._segment1._winding) ? curve : w3 < w4 ? c4 : c3, nextSeg = nextCurve._segment1; dir = nextCurve === c3 ? -1 : 1; // If we didn't find a suitable direction for next // contour to traverse, stay on the same contour. if (nextSeg._visited && seg._path !== nextSeg._path || !operator(nextSeg._winding)) { dir = 1; } else { // Switch to the intersection segment. seg._visited = interSeg._visited; seg = interSeg; if (nextSeg._visited) dir = 1; } } else { dir = 1; } } handleOut = dir > 0 ? seg._handleOut : seg._handleIn; } // Add the current segment to the path, and mark the added // segment as visited. path.add(new Segment(seg._point, added && handleIn, handleOut)); added = true; seg._visited = true; // Move to the next segment according to the traversal direction seg = dir > 0 ? seg.getNext() : seg. getPrevious(); } while (seg && !seg._visited && seg !== startSeg && seg !== startInterSeg && (seg._intersection || operator(seg._winding))); // Finish with closing the paths if necessary, correctly linking up // curves etc. if (seg && (seg === startSeg || seg === startInterSeg)) { path.firstSegment.setHandleIn((seg === startInterSeg ? startInterSeg : seg)._handleIn); path.setClosed(true); } else { path.lastSegment._handleOut.set(0, 0); } // Add the path to the result, while avoiding stray segments and // incomplete paths. The amount of segments for valid paths depend // on their geometry: // - Closed paths with only straight lines (polygons) need more than // two segments. // - Closed paths with curves can consist of only one segment. // - Open paths need at least two segments. if (path._segments.length > (path._closed ? path.isPolygon() ? 2 : 0 : 1)) paths.push(path); } return paths; } return /** @lends PathItem# */{ /** * Returns the winding contribution of the given point with respect to * this PathItem. * * @param {Point} point the location for which to determine the winding * direction * @param {Boolean} horizontal whether we need to consider this point * as part of a horizontal curve * @param {Boolean} testContains whether we need to consider this point * as part of stationary points on the curve itself, used when checking * the winding about a point. * @return {Number} the winding number */ _getWinding: function(point, horizontal, testContains) { return getWinding(point, this._getMonoCurves(), horizontal, testContains); }, /** * {@grouptitle Boolean Path Operations} * * Merges the geometry of the specified path from this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to unite with * @return {PathItem} the resulting path item */ unite: function(path) { return computeBoolean(this, path, function(w) { return w === 1 || w === 0; }, false); }, /** * Intersects the geometry of the specified path with this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to intersect with * @return {PathItem} the resulting path item */ intersect: function(path) { return computeBoolean(this, path, function(w) { return w === 2; }, false); }, /** * Subtracts the geometry of the specified path from this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to subtract * @return {PathItem} the resulting path item */ subtract: function(path) { return computeBoolean(this, path, function(w) { return w === 1; }, true); }, // Compound boolean operators combine the basic boolean operations such // as union, intersection, subtract etc. /** * Excludes the intersection of the geometry of the specified path with * this path's geometry and returns the result as a new group item. * * @param {PathItem} path the path to exclude the intersection of * @return {Group} the resulting group item */ exclude: function(path) { return new Group([this.subtract(path), path.subtract(this)]); }, /** * Splits the geometry of this path along the geometry of the specified * path returns the result as a new group item. * * @param {PathItem} path the path to divide by * @return {Group} the resulting group item */ divide: function(path) { return new Group([this.subtract(path), this.intersect(path)]); } }; }); Path.inject(/** @lends Path# */{ /** * Private method that returns and caches all the curves in this Path, which * are monotonically decreasing or increasing in the y-direction. * Used by getWinding(). */ _getMonoCurves: function() { var monoCurves = this._monoCurves, prevCurve; // Insert curve values into a cached array function insertCurve(v) { var y0 = v[1], y1 = v[7], curve = { values: v, winding: y0 === y1 ? 0 // Horizontal : y0 > y1 ? -1 // Decreasing : 1, // Increasing // Add a reference to neighboring curves. previous: prevCurve, next: null // Always set it for hidden class optimization. }; if (prevCurve) prevCurve.next = curve; monoCurves.push(curve); prevCurve = curve; } // Handle bezier curves. We need to chop them into smaller curves with // defined orientation, by solving the derivative curve for y extrema. function handleCurve(v) { // Filter out curves of zero length. // TODO: Do not filter this here. if (Curve.getLength(v) === 0) return; var y0 = v[1], y1 = v[3], y2 = v[5], y3 = v[7]; if (Curve.isLinear(v)) { // Handling linear curves is easy. insertCurve(v); } else { // Split the curve at y extrema, to get bezier curves with clear // orientation: Calculate the derivative and find its roots. var a = 3 * (y1 - y2) - y0 + y3, b = 2 * (y0 + y2) - 4 * y1, c = y1 - y0, TOLERANCE = /*#=*/ Numerical.TOLERANCE, roots = []; // Keep then range to 0 .. 1 (excluding) in the search for y // extrema. var count = Numerical.solveQuadratic(a, b, c, roots, TOLERANCE, 1 - TOLERANCE); if (count === 0) { insertCurve(v); } else { roots.sort(); var t = roots[0], parts = Curve.subdivide(v, t); insertCurve(parts[0]); if (count > 1) { // If there are two extremas, renormalize t to the range // of the second range and split again. t = (roots[1] - t) / (1 - t); // Since we already processed parts[0], we can override // the parts array with the new pair now. parts = Curve.subdivide(parts[1], t); insertCurve(parts[0]); } insertCurve(parts[1]); } } } if (!monoCurves) { // Insert curves that are monotonic in y direction into cached array monoCurves = this._monoCurves = []; var curves = this.getCurves(), segments = this._segments; for (var i = 0, l = curves.length; i < l; i++) handleCurve(curves[i].getValues()); // If the path is not closed, we need to join the end points with a // straight line, just like how filling open paths works. if (!this._closed && segments.length > 1) { var p1 = segments[segments.length - 1]._point, p2 = segments[0]._point, p1x = p1._x, p1y = p1._y, p2x = p2._x, p2y = p2._y; handleCurve([p1x, p1y, p1x, p1y, p2x, p2y, p2x, p2y]); } if (monoCurves.length > 0) { // Link first and last curves var first = monoCurves[0], last = monoCurves[monoCurves.length - 1]; first.previous = last; last.next = first; } } return monoCurves; }, /** * Returns a point that is guaranteed to be inside the path. * * @type Point * @bean */ getInteriorPoint: function() { var bounds = this.getBounds(), point = bounds.getCenter(true); if (!this.contains(point)) { // Since there is no guarantee that a poly-bezier path contains // the center of its bounding rectangle, we shoot a ray in // +x direction from the center and select a point between // consecutive intersections of the ray var curves = this._getMonoCurves(), roots = [], y = point.y, xIntercepts = []; for (var i = 0, l = curves.length; i < l; i++) { var values = curves[i].values; if ((curves[i].winding === 1 && y >= values[1] && y <= values[7] || y >= values[7] && y <= values[1]) && Curve.solveCubic(values, 1, y, roots, 0, 1) > 0) { for (var j = roots.length - 1; j >= 0; j--) xIntercepts.push(Curve.evaluate(values, roots[j], 0).x); } if (xIntercepts.length > 1) break; } point.x = (xIntercepts[0] + xIntercepts[1]) / 2; } return point; }, reorient: function() { // Paths that are not part of compound paths should never be counter- // clockwise for boolean operations. this.setClockwise(true); return this; } }); CompoundPath.inject(/** @lends CompoundPath# */{ /** * Private method that returns all the curves in this CompoundPath, which * are monotonically decreasing or increasing in the 'y' direction. * Used by getWinding(). */ _getMonoCurves: function() { var children = this._children, monoCurves = []; for (var i = 0, l = children.length; i < l; i++) monoCurves.push.apply(monoCurves, children[i]._getMonoCurves()); return monoCurves; }, /* * Fixes the orientation of a CompoundPath's child paths by first ordering * them according to their area, and then making sure that all children are * of different winding direction than the first child, ecxcept for when * some individual countours are disjoint, i.e. islands, they are reoriented * so that: * - The holes have opposite winding direction. * - Islands have to have the same winding direction as the first child. */ // NOTE: Does NOT handle self-intersecting CompoundPaths. reorient: function() { var children = this.removeChildren().sort(function(a, b) { return b.getBounds().getArea() - a.getBounds().getArea(); }); this.addChildren(children); var clockwise = children[0].isClockwise(); for (var i = 1, l = children.length; i < l; i++) { // Skip first child var point = children[i].getInteriorPoint(), counters = 0; for (var j = i - 1; j >= 0; j--) { if (children[j].contains(point)) counters++; } children[i].setClockwise(counters % 2 === 0 && clockwise); } return this; } });