/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /** * @name Curve * * @class The Curve object represents the parts of a path that are connected by * two following {@link Segment} objects. The curves of a path can be accessed * through its {@link Path#curves} array. * * While a segment describe the anchor point and its incoming and outgoing * handles, a Curve object describes the curve passing between two such * segments. Curves and segments represent two different ways of looking at the * same thing, but focusing on different aspects. Curves for example offer many * convenient ways to work with parts of the path, finding lengths, positions or * tangents at given offsets. */ var Curve = Base.extend(/** @lends Curve# */{ _class: 'Curve', /** * Creates a new curve object. * * @name Curve#initialize * @param {Segment} segment1 * @param {Segment} segment2 */ /** * Creates a new curve object. * * @name Curve#initialize * @param {Point} point1 * @param {Point} handle1 * @param {Point} handle2 * @param {Point} point2 */ /** * Creates a new curve object. * * @name Curve#initialize * @ignore * @param {Number} x1 * @param {Number} y1 * @param {Number} handle1x * @param {Number} handle1y * @param {Number} handle2x * @param {Number} handle2y * @param {Number} x2 * @param {Number} y2 */ initialize: function Curve(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7) { var count = arguments.length; if (count === 3) { // Undocumented internal constructor, used by Path#getCurves() // new Segment(path, segment1, segment2); this._path = arg0; this._segment1 = arg1; this._segment2 = arg2; } else if (count === 0) { this._segment1 = new Segment(); this._segment2 = new Segment(); } else if (count === 1) { // new Segment(segment); // Note: This copies from existing segments through bean getters this._segment1 = new Segment(arg0.segment1); this._segment2 = new Segment(arg0.segment2); } else if (count === 2) { // new Segment(segment1, segment2); this._segment1 = new Segment(arg0); this._segment2 = new Segment(arg1); } else { var point1, handle1, handle2, point2; if (count === 4) { point1 = arg0; handle1 = arg1; handle2 = arg2; point2 = arg3; } else if (count === 8) { // Convert getValue() array back to points and handles so we // can create segments for those. point1 = [arg0, arg1]; point2 = [arg6, arg7]; handle1 = [arg2 - arg0, arg3 - arg1]; handle2 = [arg4 - arg6, arg5 - arg7]; } this._segment1 = new Segment(point1, null, handle1); this._segment2 = new Segment(point2, handle2, null); } }, _changed: function() { // Clear cached values. delete this._length; delete this._bounds; }, /** * The first anchor point of the curve. * * @type Point * @bean */ getPoint1: function() { return this._segment1._point; }, setPoint1: function(point) { point = Point.read(arguments); this._segment1._point.set(point.x, point.y); }, /** * The second anchor point of the curve. * * @type Point * @bean */ getPoint2: function() { return this._segment2._point; }, setPoint2: function(point) { point = Point.read(arguments); this._segment2._point.set(point.x, point.y); }, /** * The handle point that describes the tangent in the first anchor point. * * @type Point * @bean */ getHandle1: function() { return this._segment1._handleOut; }, setHandle1: function(point) { point = Point.read(arguments); this._segment1._handleOut.set(point.x, point.y); }, /** * The handle point that describes the tangent in the second anchor point. * * @type Point * @bean */ getHandle2: function() { return this._segment2._handleIn; }, setHandle2: function(point) { point = Point.read(arguments); this._segment2._handleIn.set(point.x, point.y); }, /** * The first segment of the curve. * * @type Segment * @bean */ getSegment1: function() { return this._segment1; }, /** * The second segment of the curve. * * @type Segment * @bean */ getSegment2: function() { return this._segment2; }, /** * The path that the curve belongs to. * * @type Path * @bean */ getPath: function() { return this._path; }, /** * The index of the curve in the {@link Path#curves} array. * * @type Number * @bean */ getIndex: function() { return this._segment1._index; }, /** * The next curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getNext: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index + 1] || this._path._closed && curves[0]) || null; }, /** * The previous curve in the {@link Path#curves} array that the curve * belongs to. * * @type Curve * @bean */ getPrevious: function() { var curves = this._path && this._path._curves; return curves && (curves[this._segment1._index - 1] || this._path._closed && curves[curves.length - 1]) || null; }, /** * Specifies whether the handles of the curve are selected. * * @type Boolean * @bean */ isSelected: function() { return this.getHandle1().isSelected() && this.getHandle2().isSelected(); }, setSelected: function(selected) { this.getHandle1().setSelected(selected); this.getHandle2().setSelected(selected); }, getValues: function() { return Curve.getValues(this._segment1, this._segment2); }, getPoints: function() { // Convert to array of absolute points var coords = this.getValues(), points = []; for (var i = 0; i < 8; i += 2) points.push(new Point(coords[i], coords[i + 1])); return points; }, // DOCS: document Curve#getLength(from, to) /** * The approximated length of the curve in points. * * @type Number * @bean */ // Hide parameters from Bootstrap so it injects bean too getLength: function(/* from, to */) { var from = arguments[0], to = arguments[1], fullLength = arguments.length === 0 || from === 0 && to === 1; if (fullLength && this._length != null) return this._length; var length = Curve.getLength(this.getValues(), from, to); if (fullLength) this._length = length; return length; }, getArea: function() { return Curve.getArea(this.getValues()); }, getPart: function(from, to) { return new Curve(Curve.getPart(this.getValues(), from, to)); }, /** * Checks if this curve is linear, meaning it does not define any curve * handle. * @return {Boolean} {@true the curve is linear} */ isLinear: function() { return this._segment1._handleOut.isZero() && this._segment2._handleIn.isZero(); }, getIntersections: function(curve) { return Curve.getIntersections(this.getValues(), curve.getValues(), this, curve, []); }, // TODO: adjustThroughPoint /** * Returns a reversed version of the curve, without modifying the curve * itself. * * @return {Curve} a reversed version of the curve */ reverse: function() { return new Curve(this._segment2.reverse(), this._segment1.reverse()); }, /** * Private method that handles all types of offset / isParameter pairs and * converts it to a curve parameter. */ _getParameter: function(offset, isParameter) { return isParameter ? offset // Accept CurveLocation objects, and objects that act like // them: : offset && offset.curve === this ? offset.parameter : offset === undefined && isParameter === undefined ? 0.5 // default is in the middle : this.getParameterAt(offset, 0); }, /** * Divides the curve into two curves at the given offset. The curve itself * is modified and becomes the first part, the second part is returned as a * new curve. If the modified curve belongs to a path item, the second part * is also added to the path. * * @name Curve#divide * @function * @param {Number} [offset=0.5] the offset on the curve at which to split, * or the curve time parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Curve} the second part of the divided curve */ // TODO: Rename to divideAt()? divide: function(offset, isParameter) { var parameter = this._getParameter(offset, isParameter), tolerance = /*#=*/ Numerical.TOLERANCE, res = null; if (parameter > tolerance && parameter < 1 - tolerance) { var parts = Curve.subdivide(this.getValues(), parameter), isLinear = this.isLinear(), left = parts[0], right = parts[1]; // Write back the results: if (!isLinear) { this._segment1._handleOut.set(left[2] - left[0], left[3] - left[1]); // segment2 is the end segment. By inserting newSegment // between segment1 and 2, 2 becomes the end segment. // Convert absolute -> relative this._segment2._handleIn.set(right[4] - right[6], right[5] - right[7]); } // Create the new segment, convert absolute -> relative: var x = left[6], y = left[7], segment = new Segment(new Point(x, y), !isLinear && new Point(left[4] - x, left[5] - y), !isLinear && new Point(right[2] - x, right[3] - y)); // Insert it in the segments list, if needed: if (this._path) { // Insert at the end if this curve is a closing curve of a // closed path, since otherwise it would be inserted at 0. if (this._segment1._index > 0 && this._segment2._index === 0) { this._path.add(segment); } else { this._path.insert(this._segment2._index, segment); } // The way Path#_add handles curves, this curve will always // become the owner of the newly inserted segment. // TODO: I expect this.getNext() to produce the correct result, // but since we're inserting differently in _add (something // linked with CurveLocation#divide()), this is not the case... res = this; // this.getNext(); } else { // otherwise create it from the result of split var end = this._segment2; this._segment2 = segment; res = new Curve(segment, end); } } return res; }, /** * Splits the path this curve belongs to at the given offset. After * splitting, the path will be open. If the path was open already, splitting * will result in two paths. * * @name Curve#split * @function * @param {Number} [offset=0.5] the offset on the curve at which to split, * or the curve time parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Path} the newly created path after splitting, if any * @see Path#split(index, parameter) */ // TODO: Rename to splitAt()? split: function(offset, isParameter) { return this._path ? this._path.split(this._segment1._index, this._getParameter(offset, isParameter)) : null; }, /** * Returns a copy of the curve. * * @return {Curve} */ clone: function() { return new Curve(this._segment1, this._segment2); }, /** * @return {String} a string representation of the curve */ toString: function() { var parts = [ 'point1: ' + this._segment1._point ]; if (!this._segment1._handleOut.isZero()) parts.push('handle1: ' + this._segment1._handleOut); if (!this._segment2._handleIn.isZero()) parts.push('handle2: ' + this._segment2._handleIn); parts.push('point2: ' + this._segment2._point); return '{ ' + parts.join(', ') + ' }'; }, // Mess with indentation in order to get more line-space below... statics: { getValues: function(segment1, segment2) { var p1 = segment1._point, h1 = segment1._handleOut, h2 = segment2._handleIn, p2 = segment2._point; return [ p1._x, p1._y, p1._x + h1._x, p1._y + h1._y, p2._x + h2._x, p2._y + h2._y, p2._x, p2._y ]; }, evaluate: function(v, t, type) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], x, y; // Handle special case at beginning / end of curve if (type === 0 && (t === 0 || t === 1)) { x = t === 0 ? p1x : p2x; y = t === 0 ? p1y : p2y; } else { // Calculate the polynomial coefficients. var cx = 3 * (c1x - p1x), bx = 3 * (c2x - c1x) - cx, ax = p2x - p1x - cx - bx, cy = 3 * (c1y - p1y), by = 3 * (c2y - c1y) - cy, ay = p2y - p1y - cy - by; if (type === 0) { // Calculate the curve point at parameter value t x = ((ax * t + bx) * t + cx) * t + p1x; y = ((ay * t + by) * t + cy) * t + p1y; } else { // 1: tangent, 1st derivative // 2: normal, 1st derivative // 3: curvature, 1st derivative & 2nd derivative // Prevent tangents and normals of length 0: // http://stackoverflow.com/questions/10506868/ var tolerance = /*#=*/ Numerical.TOLERANCE; if (t < tolerance && c1x === p1x && c1y === p1y || t > 1 - tolerance && c2x === p2x && c2y === p2y) { x = p2x - p1x; y = p2y - p1y; } else { // Simply use the derivation of the bezier function for both // the x and y coordinates: x = (3 * ax * t + 2 * bx) * t + cx; y = (3 * ay * t + 2 * by) * t + cy; } if (type === 3) { // Calculate 2nd derivative, and curvature from there: // http://cagd.cs.byu.edu/~557/text/ch2.pdf page#31 // k = |dx * d2y - dy * d2x| / (( dx^2 + dy^2 )^(3/2)) var x2 = 6 * ax * t + 2 * bx, y2 = 6 * ay * t + 2 * by; return (x * y2 - y * x2) / Math.pow(x * x + y * y, 3 / 2); } } } // The normal is simply the rotated tangent: return type == 2 ? new Point(y, -x) : new Point(x, y); }, subdivide: function(v, t) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7]; if (t === undefined) t = 0.5; // Triangle computation, with loops unrolled. var u = 1 - t, // Interpolate from 4 to 3 points p3x = u * p1x + t * c1x, p3y = u * p1y + t * c1y, p4x = u * c1x + t * c2x, p4y = u * c1y + t * c2y, p5x = u * c2x + t * p2x, p5y = u * c2y + t * p2y, // Interpolate from 3 to 2 points p6x = u * p3x + t * p4x, p6y = u * p3y + t * p4y, p7x = u * p4x + t * p5x, p7y = u * p4y + t * p5y, // Interpolate from 2 points to 1 point p8x = u * p6x + t * p7x, p8y = u * p6y + t * p7y; // We now have all the values we need to build the subcurves: return [ [p1x, p1y, p3x, p3y, p6x, p6y, p8x, p8y], // left [p8x, p8y, p7x, p7y, p5x, p5y, p2x, p2y] // right ]; }, // Converts from the point coordinates (p1, c1, c2, p2) for one axis to // the polynomial coefficients and solves the polynomial for val solveCubic: function (v, coord, val, roots, min, max) { var p1 = v[coord], c1 = v[coord + 2], c2 = v[coord + 4], p2 = v[coord + 6], c = 3 * (c1 - p1), b = 3 * (c2 - c1) - c, a = p2 - p1 - c - b; return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); }, getParameterOf: function(v, x, y) { // Handle beginnings and end seperately, as they are not detected // sometimes. if (Math.abs(v[0] - x) < /*#=*/ Numerical.TOLERANCE && Math.abs(v[1] - y) < /*#=*/ Numerical.TOLERANCE) return 0; if (Math.abs(v[6] - x) < /*#=*/ Numerical.TOLERANCE && Math.abs(v[7] - y) < /*#=*/ Numerical.TOLERANCE) return 1; var txs = [], tys = [], sx = Curve.solveCubic(v, 0, x, txs), sy = Curve.solveCubic(v, 1, y, tys), tx, ty; // sx, sy == -1 means infinite solutions: // Loop through all solutions for x and match with solutions for y, // to see if we either have a matching pair, or infinite solutions // for one or the other. for (var cx = 0; sx == -1 || cx < sx;) { if (sx == -1 || (tx = txs[cx++]) >= 0 && tx <= 1) { for (var cy = 0; sy == -1 || cy < sy;) { if (sy == -1 || (ty = tys[cy++]) >= 0 && ty <= 1) { // Handle infinite solutions by assigning root of // the other polynomial if (sx == -1) tx = ty; else if (sy == -1) ty = tx; // Use average if we're within tolerance if (Math.abs(tx - ty) < /*#=*/ Numerical.TOLERANCE) return (tx + ty) * 0.5; } } // Avoid endless loops here: If sx is infinite and there was // no fitting ty, there's no solution for this bezier if (sx == -1) break; } } return null; }, // TODO: Find better name getPart: function(v, from, to) { if (from > 0) v = Curve.subdivide(v, from)[1]; // [1] right // Interpolate the parameter at 'to' in the new curve and // cut there. if (to < 1) v = Curve.subdivide(v, (to - from) / (1 - from))[0]; // [0] left return v; }, isLinear: function(v) { var isZero = Numerical.isZero; return isZero(v[0] - v[2]) && isZero(v[1] - v[3]) && isZero(v[4] - v[6]) && isZero(v[5] - v[7]); }, isFlatEnough: function(v, tolerance) { // Thanks to Kaspar Fischer and Roger Willcocks for the following: // http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], ux = 3 * c1x - 2 * p1x - p2x, uy = 3 * c1y - 2 * p1y - p2y, vx = 3 * c2x - 2 * p2x - p1x, vy = 3 * c2y - 2 * p2y - p1y; return Math.max(ux * ux, vx * vx) + Math.max(uy * uy, vy * vy) < 10 * tolerance * tolerance; }, getArea: function(v) { var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7]; // http://objectmix.com/graphics/133553-area-closed-bezier-curve.html return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x - 1.5 * c1y * p2x - 3.0 * p1y * c1x - 1.5 * p1y * c2x - 0.5 * p1y * p2x + 1.5 * c2y * p1x + 1.5 * c2y * c1x - 3.0 * c2y * p2x + 0.5 * p2y * p1x + 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10; }, getBounds: function(v) { var min = v.slice(0, 2), // Start with values of point1 max = min.slice(), // clone roots = [0, 0]; for (var i = 0; i < 2; i++) Curve._addBounds(v[i], v[i + 2], v[i + 4], v[i + 6], i, 0, min, max, roots); return new Rectangle(min[0], min[1], max[0] - min[0], max[1] - min[1]); }, /** * Private helper for both Curve.getBounds() and Path.getBounds(), which * finds the 0-crossings of the derivative of a bezier curve polynomial, to * determine potential extremas when finding the bounds of a curve. * Note: padding is only used for Path.getBounds(). */ _addBounds: function(v0, v1, v2, v3, coord, padding, min, max, roots) { // Code ported and further optimised from: // http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html function add(value, padding) { var left = value - padding, right = value + padding; if (left < min[coord]) min[coord] = left; if (right > max[coord]) max[coord] = right; } // Calculate derivative of our bezier polynomial, divided by 3. // Doing so allows for simpler calculations of a, b, c and leads to the // same quadratic roots. var a = 3 * (v1 - v2) - v0 + v3, b = 2 * (v0 + v2) - 4 * v1, c = v1 - v0, count = Numerical.solveQuadratic(a, b, c, roots), // Add some tolerance for good roots, as t = 0 / 1 are added // seperately anyhow, and we don't want joins to be added with // radiuses in getStrokeBounds() tMin = /*#=*/ Numerical.TOLERANCE, tMax = 1 - tMin; // Only add strokeWidth to bounds for points which lie within 0 < t < 1 // The corner cases for cap and join are handled in getStrokeBounds() add(v3, 0); for (var i = 0; i < count; i++) { var t = roots[i], u = 1 - t; // Test for good roots and only add to bounds if good. if (tMin < t && t < tMax) // Calculate bezier polynomial at t. add(u * u * u * v0 + 3 * u * u * t * v1 + 3 * u * t * t * v2 + t * t * t * v3, padding); } }, _getWinding: function(v, prev, x, y, roots1, roots2) { // Implementation of the crossing number algorithm: // http://en.wikipedia.org/wiki/Point_in_polygon // Solve the y-axis cubic polynomial for y and count all solutions // to the right of x as crossings. var tolerance = /*#=*/ Numerical.TOLERANCE, abs = Math.abs; // Looks at the curve's start and end y coordinates to determine // orientation. This only makes sense for curves with clear orientation, // which is why we need to split them at y extrema, see below. // Returns 0 if the curve is outside the boundaries and is not to be // considered. function getDirection(v) { var y0 = v[1], y1 = v[7], dir = y0 > y1 ? -1 : 1; // Bounds check: Reverse y0 and y1 if direction is -1. // Include end points, so we can handle them depending on different // edge cases. return dir === 1 && (y < y0 || y > y1) || dir === -1 && (y < y1 || y > y0) ? 0 : dir; } if (Curve.isLinear(v)) { // Special simplified case for handling lines. var dir = getDirection(v); if (!dir) return 0; var cross = (v[6] - v[0]) * (y - v[1]) - (v[7] - v[1]) * (x - v[0]); return (cross < -tolerance ? -1 : 1) == dir ? 0 : dir; } // Handle bezier curves. We need to chop them into smaller curves with // defined orientation, by solving the derrivative curve for Y extrema. var y0 = v[1], y1 = v[3], y2 = v[5], y3 = v[7]; // Split the curve at y extrema, to get bezier curves with clear // orientation: Calculate the derivative and find its roots. var a = 3 * (y1 - y2) - y0 + y3, b = 2 * (y0 + y2) - 4 * y1, c = y1 - y0; // Keep then range to 0 .. 1 (excluding) in the search for y extrema var count = Numerical.solveQuadratic(a, b, c, roots1, tolerance, 1 - tolerance), part, // The part of the curve that's chopped off. rest = v, // The part that's left to be chopped. t1 = roots1[0], // The first root winding = 0; for (var i = 0; i <= count; i++) { if (i === count) { part = rest; } else { // Divide the curve at t1. var curves = Curve.subdivide(rest, t1); part = curves[0]; rest = curves[1]; t1 = roots1[i]; // TODO: Watch for divide by 0 // Now renormalize t1 to the range of the next iteration. t1 = (roots1[i + 1] - t1) / (1 - t1); } // Make sure that the connecting y extrema are flat if (i > 0) part[3] = part[1]; // curve2.handle1.y = curve2.point1.y; if (i < count) part[5] = rest[1]; // curve1.handle2.y = curve2.point1.y; var dir = getDirection(part); if (!dir) continue; // Adjust start and end range depending on if curve was flipped. // In normal orientation we exclude the end point since it's also // the start point of the next curve. If flipped, we have to exclude // the end point instead. var t2, px; // Since we've split at y extrema, there can only be 0, 1, or // infinite solutions now. if (Curve.solveCubic(part, 1, y, roots2, -tolerance, 1 + -tolerance) === 1) { t2 = roots2[0]; px = Curve.evaluate(part, t2, 0).x; } else { var mid = (part[1] + part[7]) / 2; // Pick t2 based on the direction of the curve. If y < mid, // choose the beginning (which is the end of a curve with // negative orientation, as we're not actually flipping curves). t2 = y < mid && dir > 0 ? 0 : 1; // Filter out the end point, as it'll be the start point of the // next curve. if (t2 === 1 && y == part[7]) continue; px = t2 === 0 ? part[0] : part[6]; } // See if we're touching a horizontal stationary point by looking at // the tanget's y coordinate. There are two cases 0: // A) The slope is 0, meaning we're touching a stationary // point inside the curve. // B) t2 == 0 and the slope changes between the current and the // previous curve. var slope = Curve.evaluate(part, t2, 1).y, stationary = abs(slope) < tolerance || t2 < tolerance && Curve.evaluate(prev, 1, 1).y * slope < 0; // Calculate compare tolerance based on curve orientation (dir), to // add a bit of tolerance when considering points lying on the curve // as inside. But if we're touching a horizontal stationary point, // set compare tolerance to -tolerance, since we don't want to step // side-ways in tolerance based on orientation. This is needed e.g. // when touching the bottom tip of a circle. // Pass 1 for Curve.evaluate() type to calculate tangent if (x >= px + (stationary ? -tolerance : tolerance * dir) // When touching a stationary point, only count it if we're // actuall on it. && !(stationary && (abs(t2) < tolerance && abs(x - part[0]) > tolerance || abs(t2 - 1) < tolerance && abs(x - part[6]) > tolerance))) { // If this is a horizontal stationary point, and we're at the // end of the curve (or at the beginning of a curve with // negative direction, as we're not actually flipping them), // flip dir, as the curve is about to change orientation. winding += stationary && abs(t2 - (dir > 0 ? 1 : 0)) < tolerance ? -dir : dir; } // Point the previous curve to the newly split part, so stationary // points are correctly detected. prev = part; } return winding; } }}, Base.each(['getBounds', 'getStrokeBounds', 'getHandleBounds', 'getRoughBounds'], // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // determine the bounds of Curve objects with defined segment1 and segment2 // values Curve.getBounds() can be used directly on curve arrays, without // the need to create a Curve object first, as required by the code that // finds path interesections. function(name) { this[name] = function() { if (!this._bounds) this._bounds = {}; var bounds = this._bounds[name]; if (!bounds) { // Calculate the curve bounds by passing a segment list for the // curve to the static Path.get*Boudns methods. bounds = this._bounds[name] = Path[name]([this._segment1, this._segment2], false, this._path.getStyle()); } return bounds.clone(); }; }, /** @lends Curve# */{ /** * The bounding rectangle of the curve excluding stroke width. * * @name Curve#getBounds * @type Rectangle * @bean */ /** * The bounding rectangle of the curve including stroke width. * * @name Curve#getStrokeBounds * @type Rectangle * @bean */ /** * The bounding rectangle of the curve including handles. * * @name Curve#getHandleBounds * @type Rectangle * @bean */ /** * The rough bounding rectangle of the curve that is shure to include all of * the drawing, including stroke width. * * @name Curve#getRoughBounds * @type Rectangle * @bean * @ignore */ }), Base.each(['getPoint', 'getTangent', 'getNormal', 'getCurvature'], // Note: Although Curve.getBounds() exists, we are using Path.getBounds() to // determine the bounds of Curve objects with defined segment1 and segment2 // values Curve.getBounds() can be used directly on curve arrays, without // the need to create a Curve object first, as required by the code that // finds path interesections. function(name, index) { this[name + 'At'] = function(offset, isParameter) { var values = this.getValues(); return Curve.evaluate(values, isParameter ? offset : Curve.getParameterAt(values, offset, 0), index); }; // Deprecated and undocumented, but keep around for now. // TODO: Remove once enough time has passed (28.01.2013) this[name] = function(parameter) { return Curve.evaluate(this.getValues(), parameter, index); }; }, /** @lends Curve# */{ /** * Calculates the curve time parameter of the specified offset on the path, * relative to the provided start parameter. If offset is a negative value, * the parameter is searched to the left of the start parameter. If no start * parameter is provided, a default of {@code 0} for positive values of * {@code offset} and {@code 1} for negative values of {@code offset}. * @param {Number} offset * @param {Number} [start] * @return {Number} the curve time parameter at the specified offset. */ getParameterAt: function(offset, start) { return Curve.getParameterAt(this.getValues(), offset, start !== undefined ? start : offset < 0 ? 1 : 0); }, /** * Returns the curve time parameter of the specified point if it lies on the * curve, {@code null} otherwise. * @param {Point} point the point on the curve. * @return {Number} the curve time parameter of the specified point. */ getParameterOf: function(point) { point = Point.read(arguments); return Curve.getParameterOf(this.getValues(), point.x, point.y); }, /** * Calculates the curve location at the specified offset or curve time * parameter. * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {CurveLocation} the curve location at the specified the offset. */ getLocationAt: function(offset, isParameter) { if (!isParameter) offset = this.getParameterAt(offset); return new CurveLocation(this, offset); }, /** * Returns the curve location of the specified point if it lies on the * curve, {@code null} otherwise. * @param {Point} point the point on the curve. * @return {CurveLocation} the curve location of the specified point. */ getLocationOf: function(point) { // We need to use point to avoid minification issues and prevent method // from turning into a bean (by removal of the point argument). point = Point.read(arguments); var t = this.getParameterOf(point); return t != null ? new CurveLocation(this, t) : null; }, getNearestLocation: function(point) { point = Point.read(arguments); var values = this.getValues(), count = 100, tolerance = Numerical.TOLERANCE, minDist = Infinity, minT = 0; function refine(t) { if (t >= 0 && t <= 1) { var dist = point.getDistance( Curve.evaluate(values, t, 0), true); if (dist < minDist) { minDist = dist; minT = t; return true; } } } for (var i = 0; i <= count; i++) refine(i / count); // Now iteratively refine solution until we reach desired precision. var step = 1 / (count * 2); while (step > tolerance) { if (!refine(minT - step) && !refine(minT + step)) step /= 2; } var pt = Curve.evaluate(values, minT, 0); return new CurveLocation(this, minT, pt, null, null, null, point.getDistance(pt)); }, getNearestPoint: function(point) { // We need to use point to avoid minification issues and prevent method // from turning into a bean (by removal of the point argument). point = Point.read(arguments); return this.getNearestLocation(point).getPoint(); } /** * Returns the point on the curve at the specified offset. * * @name Curve#getPointAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the point on the curve at the specified offset. */ /** * Returns the tangent vector of the curve at the specified position. * * @name Curve#getTangentAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the tangent of the curve at the specified offset. */ /** * Returns the normal vector of the curve at the specified position. * * @name Curve#getNormalAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the normal of the curve at the specified offset. */ /** * Returns the curvature vector of the curve at the specified position. * Curvatures indicate how sharply a curve changes direction. A straight * line has zero curvature where as a circle has a constant curvature. * * @name Curve#getCurvatureAt * @function * @param {Number} offset the offset on the curve, or the curve time * parameter if {@code isParameter} is {@code true} * @param {Boolean} [isParameter=false] pass {@code true} if {@code offset} * is a curve time parameter. * @return {Point} the curvature of the curve at the specified offset. */ }), new function() { // Scope for methods that require numerical integration function getLengthIntegrand(v) { // Calculate the coefficients of a Bezier derivative. var p1x = v[0], p1y = v[1], c1x = v[2], c1y = v[3], c2x = v[4], c2y = v[5], p2x = v[6], p2y = v[7], ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), bx = 6 * (p1x + c2x) - 12 * c1x, cx = 3 * (c1x - p1x), ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), by = 6 * (p1y + c2y) - 12 * c1y, cy = 3 * (c1y - p1y); return function(t) { // Calculate quadratic equations of derivatives for x and y var dx = (ax * t + bx) * t + cx, dy = (ay * t + by) * t + cy; return Math.sqrt(dx * dx + dy * dy); }; } // Amount of integral evaluations for the interval 0 <= a < b <= 1 function getIterations(a, b) { // Guess required precision based and size of range... // TODO: There should be much better educated guesses for // this. Also, what does this depend on? Required precision? return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32))); } return { statics: true, getLength: function(v, a, b) { if (a === undefined) a = 0; if (b === undefined) b = 1; var isZero = Numerical.isZero; // See if the curve is linear by checking p1 == c1 and p2 == c2 if (isZero(v[0] - v[2]) && isZero(v[1] - v[3]) && isZero(v[6] - v[4]) && isZero(v[7] - v[5])) { // Straight line var dx = v[6] - v[0], // p2x - p1x dy = v[7] - v[1]; // p2y - p1y return (b - a) * Math.sqrt(dx * dx + dy * dy); } var ds = getLengthIntegrand(v); return Numerical.integrate(ds, a, b, getIterations(a, b)); }, getParameterAt: function(v, offset, start) { if (offset === 0) return start; // See if we're going forward or backward, and handle cases // differently var forward = offset > 0, a = forward ? start : 0, b = forward ? 1 : start, offset = Math.abs(offset), // Use integrand to calculate both range length and part // lengths in f(t) below. ds = getLengthIntegrand(v), // Get length of total range rangeLength = Numerical.integrate(ds, a, b, getIterations(a, b)); if (offset >= rangeLength) return forward ? b : a; // Use offset / rangeLength for an initial guess for t, to // bring us closer: var guess = offset / rangeLength, length = 0; // Iteratively calculate curve range lengths, and add them up, // using integration precision depending on the size of the // range. This is much faster and also more precise than not // modifing start and calculating total length each time. function f(t) { var count = getIterations(start, t); length += start < t ? Numerical.integrate(ds, start, t, count) : -Numerical.integrate(ds, t, start, count); start = t; return length - offset; } return Numerical.findRoot(f, ds, forward ? a + guess : b - guess, // Initial guess for x a, b, 16, /*#=*/ Numerical.TOLERANCE); } }; }, new function() { // Scope for intersection using bezier fat-line clipping function addLocation(locations, curve1, t1, point1, curve2, t2, point2) { // Avoid duplicates when hitting segments (closed paths too) var first = locations[0], last = locations[locations.length - 1]; if ((!first || !point1.isClose(first._point, Numerical.EPSILON)) && (!last || !point1.isClose(last._point, Numerical.EPSILON))) locations.push( new CurveLocation(curve1, t1, point1, curve2, t2, point2)); } function addCurveIntersections_old(v1, v2, curve1, curve2, locations, range1, range2, recursion) { /*#*/ if (__options.fatline) { // NOTE: range1 and range1 are only used for recusion recursion = (recursion || 0) + 1; // Avoid endless recursion. // Perhaps we should fall back to a more expensive method after this, // but so far endless recursion happens only when there is no real // intersection and the infinite fatline continue to intersect with the // other curve outside its bounds! if (recursion > 20) return; // Set up the parameter ranges. range1 = range1 || [ 0, 1 ]; range2 = range2 || [ 0, 1 ]; // Get the clipped parts from the original curve, to avoid cumulative // errors var part1 = Curve.getPart(v1, range1[0], range1[1]), part2 = Curve.getPart(v2, range2[0], range2[1]), iteration = 0; // Loop until both parameter range converge. We have to handle the // degenerate case seperately, where fat-line clipping can become // numerically unstable when one of the curves has converged to a point // and the other hasn't. while (iteration++ < 20) { // First we clip v2 with v1's fat-line var range, intersects1 = clipFatLine(part1, part2, range = range2.slice()), intersects2 = 0; // Stop if there are no possible intersections if (intersects1 === 0) break; if (intersects1 > 0) { // Get the clipped parts from the original v2, to avoid // cumulative errors range2 = range; part2 = Curve.getPart(v2, range2[0], range2[1]); // Next we clip v1 with nuv2's fat-line intersects2 = clipFatLine(part2, part1, range = range1.slice()); // Stop if there are no possible intersections if (intersects2 === 0) break; if (intersects1 > 0) { // Get the clipped parts from the original v2, to avoid // cumulative errors range1 = range; part1 = Curve.getPart(v1, range1[0], range1[1]); } } // Get the clipped parts from the original v1 // Check if there could be multiple intersections if (intersects1 < 0 || intersects2 < 0) { // Subdivide the curve which has converged the least from the // original range [0,1], which would be the curve with the // largest parameter range after clipping if (range1[1] - range1[0] > range2[1] - range2[0]) { // subdivide v1 and recurse var t = (range1[0] + range1[1]) / 2; addCurveIntersections(v1, v2, curve1, curve2, locations, [ range1[0], t ], range2, recursion); addCurveIntersections(v1, v2, curve1, curve2, locations, [ t, range1[1] ], range2, recursion); break; } else { // subdivide v2 and recurse var t = (range2[0] + range2[1]) / 2; addCurveIntersections(v1, v2, curve1, curve2, locations, range1, [ range2[0], t ], recursion); addCurveIntersections(v1, v2, curve1, curve2, locations, range1, [ t, range2[1] ], recursion); break; } } // We need to bailout of clipping and try a numerically stable // method if both of the parameter ranges have converged reasonably // well (according to Numerical.TOLERANCE). if (Math.abs(range1[1] - range1[0]) <= /*#=*/ Numerical.TOLERANCE && Math.abs(range2[1] - range2[0]) <= /*#=*/ Numerical.TOLERANCE) { var t1 = (range1[0] + range1[1]) / 2, t2 = (range2[0] + range2[1]) / 2; addLocation(locations, curve1, t1, Curve.evaluate(v1, t1, 0), curve2, t2, Curve.evaluate(v2, t2, 0)); break; } } /*#*/ } else { // !__options.fatline var bounds1 = Curve.getBounds(v1), bounds2 = Curve.getBounds(v2); if (bounds1.touches(bounds2)) { // See if both curves are flat enough to be treated as lines, either // because they have no control points at all, or are "flat enough" // If the curve was flat in a previous iteration, we don't need to // recalculate since it does not need further subdivision then. if ((Curve.isLinear(v1) || Curve.isFlatEnough(v1, /*#=*/ Numerical.TOLERANCE)) && (Curve.isLinear(v2) || Curve.isFlatEnough(v2, /*#=*/ Numerical.TOLERANCE))) { // See if the parametric equations of the lines interesct. addLineIntersection(v1, v2, curve1, curve2, locations); } else { // Subdivide both curves, and see if they intersect. // If one of the curves is flat already, no further subdivion // is required. var v1s = Curve.subdivide(v1), v2s = Curve.subdivide(v2); for (var i = 0; i < 2; i++) for (var j = 0; j < 2; j++) Curve.getIntersections(v1s[i], v2s[j], curve1, curve2, locations); } } return locations; /*#*/ } // !__options.fatline } function addCurveIntersections(v1, v2, curve1, curve2, locations, tmin, tmax, umin, umax, oldTdiff, reverse, recursion) { if(recursion === undefined){ recursion |= 0; tmin = tmin || 0; tmax = tmax || 1; umin = umin || 0; umax = umax || 1; oldTdiff = oldTdiff || 1; reverse = false; } // Avoid endless recursion. if (recursion > 20) return; // Let P be the first curve and Q be the second var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7], getSignedDistance = Line.getSignedDistance, // Calculate the fat-line L for Q is the baseline l and two // offsets which completely encloses the curve P. d1 = getSignedDistance(q0x, q0y, q3x, q3y, v2[2], v2[3]) || 0, d2 = getSignedDistance(q0x, q0y, q3x, q3y, v2[4], v2[5]) || 0, factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9, dmin = factor * Math.min(0, d1, d2), dmax = factor * Math.max(0, d1, d2), // Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the // distance of P from the baseline l of the fat-line, ti is equally // spaced in [0, 1] dp0 = getSignedDistance(q0x, q0y, q3x, q3y, v1[0], v1[1]), dp1 = getSignedDistance(q0x, q0y, q3x, q3y, v1[2], v1[3]), dp2 = getSignedDistance(q0x, q0y, q3x, q3y, v1[4], v1[5]), dp3 = getSignedDistance(q0x, q0y, q3x, q3y, v1[6], v1[7]); // Get the top and bottom parts of the convex-hull var hull = getConvexHull(dp0, dp1, dp2, dp3), top = hull[0], bottom = hull[1], clip_tmin, clip_tmax; // Clip the convexhull with dmin and dmax clip_tmin = clipConvexHull(top, bottom, dmin, dmax); top.reverse(); bottom.reverse(); clip_tmax = clipConvexHull(top, bottom, dmin, dmax); // No intersections if one of the tvalues are null or 'undefined' if(clip_tmin == null || clip_tmax == null) return false; // Clip P with the fatline for Q var v1New = Curve.getPart(v1, clip_tmin, clip_tmax), tDiff = clip_tmax - clip_tmin, // tmin and tmax are within the range (0, 1). We need to project it // to the original parameter range for v2. tminNew = tmax * clip_tmin + tmin * (1 - clip_tmin), tmaxNew = tmax * clip_tmax + tmin * (1 - clip_tmax); // Check if we need to subdivide the curves if (oldTdiff > 0.8 && tDiff > 0.8) if (tmaxNew - tminNew > umax - umin) { } else { } else if (Math.max(umax - umin, tmaxNew - tminNew) < Numerical.TOLERANCE) // We have isolated the intersection with sufficient precision if (reverse){ } else { } else // Iterate addCurveIntersections(v2, v1, curve2, curve1, locations, umin, umax, tminNew, tmaxNew, tDiff, !reverse, recursion); } /*#*/ if (__options.fatline) { /** * Clip curve V2 with fat-line of v1 * @param {Array} v1 section of the first curve, for which we will make a * fat-line * @param {Array} v2 section of the second curve; we will clip this curve * with the fat-line of v1 * @param {Array} range2 the parameter range of v2 * @return {Number} 0: no Intersection, 1: one or more intersection */ function clipFatLine(v1, v2, tRangeV2) { function clipCHull(hull_top, hull_bottom, dmin, dmax) { var tProxy, tVal = null, i, li, px, py, qx, qy; for (i = 0, li = hull_bottom.length-1; i < li; i++) { py = hull_bottom[i][1]; qy = hull_bottom[i+1][1]; if (py < qy) tProxy = null; else if (qy <= dmax) { px = hull_bottom[i][0]; qx = hull_bottom[i+1][0]; tProxy = px + (dmax - py) * (qx - px) / (qy - py); } else // Try the next chain continue; // We got a proxy-t; break; } if (hull_top[0][1] <= dmax) tProxy = hull_top[0][0]; for (i = 0, li = hull_top.length-1; i < li; i++) { py = hull_top[i][1]; qy = hull_top[i+1][1]; if (py >= dmin) tVal = tProxy; else if (py > qy) tVal = null; else if (qy >= dmin) { px = hull_top[i][0]; qx = hull_top[i+1][0]; tVal = px + (dmin - py) * (qx - px) / (qy - py); } else continue; break; } return tVal; } // Let P be the first curve and Q be the second var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7], getSignedDistance = Line.getSignedDistance, // Calculate the fat-line L for P is the baseline l and two // offsets which completely encloses the curve P. d1 = getSignedDistance(p0x, p0y, p3x, p3y, v1[2], v1[3]) || 0, d2 = getSignedDistance(p0x, p0y, p3x, p3y, v1[4], v1[5]) || 0, factor = d1 * d2 > 0 ? 3 / 4 : 4 / 9, dmin = factor * Math.min(0, d1, d2), dmax = factor * Math.max(0, d1, d2), // Calculate non-parametric bezier curve D(ti, di(t)) - di(t) is the // distance of Q from the baseline l of the fat-line, ti is equally // spaced in [0, 1] dq0 = getSignedDistance(p0x, p0y, p3x, p3y, v2[0], v2[1]), dq1 = getSignedDistance(p0x, p0y, p3x, p3y, v2[2], v2[3]), dq2 = getSignedDistance(p0x, p0y, p3x, p3y, v2[4], v2[5]), dq3 = getSignedDistance(p0x, p0y, p3x, p3y, v2[6], v2[7]); // Get the top and bottom parts of the convex-hull var hull = getConvexHull(dq0, dq1, dq2, dq3), top = hull[0], bottom = hull[1], tmin, tmax; tmin = clipCHull(top, bottom, dmin, dmax); top.reverse(); bottom.reverse(); tmax = clipCHull(top, bottom, dmin, dmax); // No intersections if one of the tvalues are null if(tmin == null || tmax == null) return 0; // tmin and tmax are within the range (0, 1). We need to project it // to the original parameter range for v2. var v2tmin = tRangeV2[0], tdiff = tRangeV2[1] - v2tmin; tRangeV2[0] = v2tmin + tmin * tdiff; tRangeV2[1] = v2tmin + tmax * tdiff; return 1; } /** * Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)) * The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for * di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the * curve are already sorted in the X axis in the increasing order. * Calculating convex-hull is much easier than a set of arbitrary points. * * The convex-hull is returned as two parts [TOP, BOTTOM]: * (TOP and BOTTOM are in a coordinate space where y increases * upwards with origin at bottom-left) * part that lies above the 'median' (line connecting end points of the curve) * and part that lies below the median. */ function getConvexHull(dq0, dq1, dq2, dq3) { var p0 = [ 0, dq0 ], p1 = [ 1 / 3, dq1 ], p2 = [ 2 / 3, dq2 ], p3 = [ 1, dq3 ], // Find signed distance of p1 and p2 from line [ p0, p3 ] getSignedDistance = Line.getSignedDistance, dist1 = getSignedDistance(0, dq0, 1, dq3, 1 / 3, dq1), dist2 = getSignedDistance(0, dq0, 1, dq3, 2 / 3, dq2), hull; // Check if p1 and p2 are on the same side of the line [ p0, p3 ] if (dist1 * dist2 < 0) { // p1 and p2 lie on different sides of [ p0, p3 ]. The hull is a // quadrilateral and line [ p0, p3 ] is NOT part of the hull so we // are pretty much done here. // The top part includes p1, // we will reverse it later if that is not the case hull = [[p0, p1, p3], [p0, p2, p3]]; } else { // p1 and p2 lie on the same sides of [ p0, p3 ]. The hull can be // a triangle or a quadrilateral and line [ p0, p3 ] is part of the // hull. Check if the hull is a triangle or a quadrilateral. var pmax, cross; if (Math.abs(dist1) > Math.abs(dist2)) { pmax = p1; // apex is dq3 and the other apex point is dq0 vector // dqapex->dqapex2 or base vector which is already part of the hull. cross = (dq3 - dq2 - (dq3 - dq0) / 3) * (2 * (dq3 - dq2) - dq3 + dq1) / 3; } else { pmax = p2; // apex is dq0 in this case, and the other apex point is dq3 vector // dqapex->dqapex2 or base vector which is already part of the hull. cross = (dq1 - dq0 + (dq0 - dq3) / 3) * (-2 * (dq0 - dq1) + dq0 - dq2) / 3; } // Compare cross products of these vectors to determine if the point is // in the triangle [ p3, pmax, p0 ], or if it is a quadrilateral. hull = cross < 0 // p2 is inside the triangle, hull is a triangle. ? [[p0, pmax, p3], [p0, p3]] // Convexhull is a quadrilateral and we need all lines in the // correct order where line [ p0, p3 ] is part of the hull. : [[p0, p1, p2, p3], [p0, p3]]; } return (dist1 < 0)? hull.reverse() : hull; } /** * Clips the convex-hull and returns [tmin, tmax] for the curve contained */ function clipConvexHull(hull, dmin, dmax) { function clipCHull(hull_top, hull_bottom, dmin, dmax) { var tProxy, tVal = null, i, li, px, py, qx, qy; for (i = 0, li = hull_bottom.length-1; i < li; i++) { py = hull_bottom[i][1]; qy = hull_bottom[i+1][1]; if (py < qy) tProxy = null; else if (qy <= dmax) { px = hull_bottom[i][0]; qx = hull_bottom[i+1][0]; tProxy = px + (dmax - py) * (qx - px) / (qy - py); } else // Try the next chain continue; // We got a proxy-t; break; } if (hull_top[0][1] <= dmax) tProxy = hull_top[0][0]; for (i = 0, li = hull_top.length-1; i < li; i++) { py = hull_top[i][1]; qy = hull_top[i+1][1]; if (py >= dmin) tVal = tProxy; else if (py > qy) tVal = null; else if (qy >= dmin) { px = hull_top[i][0]; qx = hull_top[i+1][0]; tVal = px + (dmin - py) * (qx - px) / (qy - py); } else continue; break; } return tVal; } var tmin, tmax, top = hull[0], bottom = hull[1]; tmin = clipCHull(top, bottom, dmin, dmax); top.reverse(); bottom.reverse(); tmax = clipCHull(top, bottom, dmin, dmax); return [tmin, tmax]; } /*#*/ } // __options.fatline /** * Intersections between curve and line becomes rather simple here mostly * because of Numerical class. We can rotate the curve and line so that the * line is on the X axis, and solve the implicit equations for the X axis * and the curve. */ function addCurveLineIntersections(v1, v2, curve1, curve2, locations) { var flip = Curve.isLinear(v1), vc = flip ? v2 : v1, vl = flip ? v1 : v2, lx1 = vl[0], ly1 = vl[1], lx2 = vl[6], ly2 = vl[7], // Rotate both curve and line around l1 so that line is on x axis. ldx = lx2 - lx1, ldy = ly2 - ly1, // Calculate angle to the x-axis (1, 0). angle = Math.atan2(-ldy, ldx), sin = Math.sin(angle), cos = Math.cos(angle), // (rlx1, rly1) = (0, 0) rlx2 = ldx * cos - ldy * sin, // The curve values for the rotated line. rvl = [0, 0, 0, 0, rlx2, 0, rlx2, 0], // Calculate the curve values of the rotated curve. rvc = []; for(var i = 0; i < 8; i += 2) { var x = vc[i] - lx1, y = vc[i + 1] - ly1; rvc.push( x * cos - y * sin, y * cos + x * sin); } var roots = [], count = Curve.solveCubic(rvc, 1, 0, roots, 0, 1); // NOTE: count could be -1 for inifnite solutions, but that should only // happen with lines, in which case we should not be here. for (var i = 0; i < count; i++) { var tc = roots[i], x = Curve.evaluate(rvc, tc, 0).x; // We do have a point on the infinite line. Check if it falls on // the line *segment*. if (x >= 0 && x <= rlx2) { // Find the parameter of the intersection on the rotated line. var tl = Curve.getParameterOf(rvl, x, 0), t1 = flip ? tl : tc, t2 = flip ? tc : tl; addLocation(locations, curve1, t1, Curve.evaluate(v1, t1, 0), curve2, t2, Curve.evaluate(v2, t2, 0)); } } } function addLineIntersection(v1, v2, curve1, curve2, locations) { var point = Line.intersect( v1[0], v1[1], v1[6], v1[7], v2[0], v2[1], v2[6], v2[7]); // Passing null for parameter leads to lazy determination of parameter // values in CurveLocation#getParameter() only once they are requested. if (point) addLocation(locations, curve1, null, point, curve2); } return { statics: /** @lends Curve */{ // We need to provide the original left curve reference to the // #getIntersections() calls as it is required to create the resulting // CurveLocation objects. getIntersections: function(v1, v2, curve1, curve2, locations) { var linear1 = Curve.isLinear(v1), linear2 = Curve.isLinear(v2), c1p1 = curve1.getPoint1(), c1p2 = curve1.getPoint2(), c2p1 = curve2.getPoint1(), c2p2 = curve2.getPoint2(), tolerance = /*#=*/ Numerical.TOLERANCE; // Handle a special case where if both curves start or end at the // same point, the same end-point case will be handled after we // calculate other intersections within the curve. if (c1p1.isClose(c2p1, tolerance)) addLocation(locations, curve1, 0, c1p1, curve2, 0, c1p1); if (c1p1.isClose(c2p2, tolerance)) addLocation(locations, curve1, 0, c1p1, curve2, 1, c1p1); // Determine the correct intersection method based on values of // linear1 & 2: (linear1 && linear2 ? addLineIntersection : linear1 || linear2 ? addCurveLineIntersections : addCurveIntersections)(v1, v2, curve1, curve2, locations); // Handle the special case where curve1's end-point overlap with // curve2's points. if (c1p2.isClose(c2p1, tolerance)) addLocation(locations, curve1, 1, c1p2, curve2, 0, c1p2); if (c1p2.isClose(c2p2, tolerance)) addLocation(locations, curve1, 1, c1p2, curve2, 1, c1p2); return locations; }, getConvexHull: getConvexHull, clipConvexHull: clipConvexHull }}; });