/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2014, Juerg Lehni & Jonathan Puckey * http://scratchdisk.com/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ /* * Boolean Geometric Path Operations * * Supported * - Path and CompoundPath items * - Boolean Union * - Boolean Intersection * - Boolean Subtraction * - Boolean Exclusion * - Resolving a self-intersecting Path items * - Boolean operations on self-intersecting Paths items * * @author Harikrishnan Gopalakrishnan * http://hkrish.com/playground/paperjs/booleanStudy.html */ PathItem.inject(new function() { var operators = { unite: function(w) { return w === 1 || w === 0; }, intersect: function(w) { return w === 2; }, subtract: function(w) { return w === 1; }, exclude: function(w) { return w === 1; } }; // Creates a cloned version of the path that we can modify freely, with its // matrix applied to its geometry. Calls #reduce() to simplify compound // paths and remove empty curves, and #reorient() to make sure all paths // have correct winding direction. function preparePath(path) { return path.clone(false).reduce().resolveCrossings() .transform(null, true, true); } function finishBoolean(ctor, paths, path1, path2, reduce) { var result = new ctor(Item.NO_INSERT); result.addChildren(paths, true); // See if the item can be reduced to just a simple Path. if (reduce) result = result.reduce(); // Insert the resulting path above whichever of the two paths appear // further up in the stack. result.insertAbove(path2 && path1.isSibling(path2) && path1.getIndex() < path2.getIndex() ? path2 : path1); // Copy over the left-hand item's style and we're done. // TODO: Consider using Item#_clone() for this, but find a way to not // clone children / name (content). result.setStyle(path1._style); return result; } var scaleFactor = 1; var textAngle = 0; var fontSize = 5; var segmentOffset; var pathIndices; var pathIndex; var pathCount; // Boolean operators return true if a curve with the given winding // contribution contributes to the final result or not. They are called // for each curve in the graph after curves in the operands are // split at intersections. function computeBoolean(path1, path2, operation) { scaleFactor = Base.pick(window.scaleFactor, scaleFactor); textAngle = Base.pick(window.textAngle, 0); segmentOffset = {}; pathIndices = {}; var reportSegments = window.reportSegments; var reportWindings = window.reportWindings; var reportIntersections = window.reportIntersections; if (path2) { window.reportSegments = false; window.reportWindings = false; window.reportIntersections = false; } // We do not modify the operands themselves, but create copies instead, // fas produced by the calls to preparePath(). // Note that the result paths might not belong to the same type // i.e. subtraction(A:Path, B:Path):CompoundPath etc. var _path1 = preparePath(path1), _path2 = path2 && path1 !== path2 && preparePath(path2); window.reportSegments = reportSegments; window.reportWindings = reportWindings; window.reportIntersections = reportIntersections; // Give both paths the same orientation except for subtraction // and exclusion, where we need them at opposite orientation. if (_path2 && /^(subtract|exclude)$/.test(operation) ^ (_path2.isClockwise() !== _path1.isClockwise())) _path2.reverse(); // Split curves at crossings and overlaps on both paths. Note that for // self-intersection, path2 is null and getIntersections() handles it. // console.time('intersection'); var intersections = CurveLocation.expand( _path1.getIntersections(_path2, function(inter) { // Only handle overlaps when not self-intersecting return inter.isCrossing() || _path2 && inter.isOverlap(); }) ); // console.timeEnd('intersection'); splitPath(intersections); var segments = [], // Aggregate of all curves in both operands, monotonic in y monoCurves = []; function collect(paths) { for (var i = 0, l = paths.length; i < l; i++) { var path = paths[i]; segments.push.apply(segments, path._segments); monoCurves.push.apply(monoCurves, path._getMonoCurves()); } } // Collect all segments and monotonic curves collect(_path1._children || [_path1]); if (_path2) collect(_path2._children || [_path2]); // Propagate the winding contribution. Winding contribution of curves // does not change between two intersections. // First, propagate winding contributions for curve chains starting in // all intersections: for (var i = 0, l = intersections.length; i < l; i++) { propagateWinding(intersections[i]._segment, _path1, _path2, monoCurves, operation); } // Now process the segments that are not part of any intersecting chains for (var i = 0, l = segments.length; i < l; i++) { var segment = segments[i]; if (segment._winding == null) { propagateWinding(segment, _path1, _path2, monoCurves, operation); } } return finishBoolean(CompoundPath, tracePaths(segments, operation), path1, path2, true); } function logIntersection(title, inter) { var other = inter._intersection; var log = [title, inter._id, 'id', inter.getPath()._id, 'i', inter.getIndex(), 't', inter._parameter, 'o', !!inter._overlaps, 'p', inter.getPoint(), 'Other', other._id, 'id', other.getPath()._id, 'i', other.getIndex(), 't', other._parameter, 'o', !!other._overlaps, 'p', other.getPoint()]; console.log(log.map(function(v) { return v == null ? '-' : v }).join(' ')); } /* * Creates linked lists between intersections through their _next property. * * @private */ function linkIntersections(from, to) { // Only create the link if it's not already in the existing chain, to // avoid endless recursions. First walk to the beginning of the chain, // and abort if we find `to`. var prev = from; while (prev) { if (prev === to) return; prev = prev._prev; } // Now walk to the end of the existing chain to find an empty spot, but // stop if we find `to`, to avoid adding it again. while (from._next && from._next !== to) from = from._next; // If we're reached the end of the list, we can add it. if (!from._next) { // Go back to beginning of the other chain, and link the two up. while (to._prev) to = to._prev; from._next = to; to._prev = from; } } /** * Splits a path-item at the given locations. * * @param {CurveLocation[]} locations an array of the locations to split the * path-item at. * @private */ function splitPath(locations) { if (window.reportIntersections) { console.log('Crossings', locations.length / 2); locations.forEach(function(inter) { if (inter._other) return; logIntersection('Intersection', inter); new Path.Circle({ center: inter.point, radius: 2 * scaleFactor, strokeColor: 'red', strokeScaling: false }); }); } // TODO: Make public in API, since useful! var tMin = /*#=*/Numerical.CURVETIME_EPSILON, tMax = 1 - tMin, noHandles = false, clearSegments = [], prevCurve, prevT; for (var i = locations.length - 1; i >= 0; i--) { var loc = locations[i], curve = loc._curve, t = loc._parameter, origT = t; if (curve !== prevCurve) { // This is a new curve, update noHandles setting. noHandles = !curve.hasHandles(); } else if (prevT > 0) { // Scale parameter when we are splitting same curve multiple // times, but avoid dividing by zero. t /= prevT; } var segment; if (t < tMin) { segment = curve._segment1; } else if (t > tMax) { segment = curve._segment2; } else { // Split the curve at t, passing true for _setHandles to always // set the handles on the sub-curves even if the original curve // had no handles. segment = curve.divide(t, true, true)._segment1; // Keep track of segments of curves without handles, so they can // be cleared again at the end. if (noHandles) clearSegments.push(segment); } loc._setSegment(segment); // Create links from the new segment to the intersection on the // other curve, as well as from there back. If there are multiple // intersections on the same segment, we create linked lists between // the intersections through linkIntersections(), linking both ways. var inter = segment._intersection, dest = loc._intersection; if (inter) { linkIntersections(inter, dest); // Each time we add a new link to the linked list, we need to // add links from all the other entries to the new entry. var other = inter; while (other) { linkIntersections(other._intersection, inter); other = other._next; } } else { segment._intersection = dest; } prevCurve = curve; prevT = origT; } // Clear segment handles if they were part of a curve with no handles, // once we are done with the entire curve. for (var i = 0, l = clearSegments.length; i < l; i++) { clearSegments[i].clearHandles(); } } /** * Private method that returns the winding contribution of the given point * with respect to a given set of monotone curves. */ function getWinding(point, curves, horizontal, testContains) { var epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON, tMin = /*#=*/Numerical.CURVETIME_EPSILON, tMax = 1 - tMin, px = point.x, py = point.y, windLeft = 0, windRight = 0, roots = [], abs = Math.abs; // Absolutely horizontal curves may return wrong results, since // the curves are monotonic in y direction and this is an // indeterminate state. if (horizontal) { var yTop = -Infinity, yBottom = Infinity, yBefore = py - epsilon, yAfter = py + epsilon; // Find the closest top and bottom intercepts for the same vertical // line. for (var i = 0, l = curves.length; i < l; i++) { var values = curves[i].values; if (Curve.solveCubic(values, 0, px, roots, 0, 1) > 0) { for (var j = roots.length - 1; j >= 0; j--) { var y = Curve.getPoint(values, roots[j]).y; if (y < yBefore && y > yTop) { yTop = y; } else if (y > yAfter && y < yBottom) { yBottom = y; } } } } // Shift the point lying on the horizontal curves by // half of closest top and bottom intercepts. yTop = (yTop + py) / 2; yBottom = (yBottom + py) / 2; if (yTop > -Infinity) windLeft = getWinding(new Point(px, yTop), curves, false, testContains); if (yBottom < Infinity) windRight = getWinding(new Point(px, yBottom), curves, false, testContains); } else { var xBefore = px - epsilon, xAfter = px + epsilon; // Find the winding number for right side of the curve, inclusive of // the curve itself, while tracing along its +-x direction. var startCounted = false, prevCurve, prevT; for (var i = 0, l = curves.length; i < l; i++) { var curve = curves[i], values = curve.values, winding = curve.winding; // Since the curves are monotone in y direction, we can just // compare the endpoints of the curve to determine if the // ray from query point along +-x direction will intersect // the monotone curve. Results in quite significant speedup. if (winding && (winding === 1 && py >= values[1] && py <= values[7] || py >= values[7] && py <= values[1]) && Curve.solveCubic(values, 1, py, roots, 0, 1) === 1) { var t = roots[0]; // Due to numerical precision issues, two consecutive curves // may register an intercept twice, at t = 1 and 0, if y is // almost equal to one of the endpoints of the curves. // But since curves may contain more than one loop of curves // and the end point on the last curve of a loop would not // be registered as a double, we need to filter these cases: if (!( // = the following conditions will be excluded: // Detect and exclude intercepts at 'end' of loops // if the start of the loop was already counted. // This also works for the last curve: [i + 1] == null t > tMax && startCounted && curve.next !== curves[i + 1] // Detect 2nd case of a consecutive intercept, but make // sure we're still on the same loop. || t < tMin && prevT > tMax && curve.previous === prevCurve)) { var x = Curve.getPoint(values, t).x, slope = Curve.getTangent(values, t).y, counted = false; // Take care of cases where the curve and the preceding // curve merely touches the ray towards +-x direction, // but proceeds to the same side of the ray. // This essentially is not a crossing. if (Numerical.isZero(slope) && !Curve.isStraight(values) // Does the slope over curve beginning change? || t < tMin && slope * Curve.getTangent( curve.previous.values, 1).y < 0 // Does the slope over curve end change? || t > tMax && slope * Curve.getTangent( curve.next.values, 0).y < 0) { if (testContains && x >= xBefore && x <= xAfter) { ++windLeft; ++windRight; counted = true; } } else if (x <= xBefore) { windLeft += winding; counted = true; } else if (x >= xAfter) { windRight += winding; counted = true; } // Detect the beginning of a new loop by comparing with // the previous curve, and set startCounted accordingly. // This also works for the first loop where i - 1 == -1 if (curve.previous !== curves[i - 1]) startCounted = t < tMin && counted; } prevCurve = curve; prevT = t; } } } return Math.max(abs(windLeft), abs(windRight)); } function propagateWinding(segment, path1, path2, monoCurves, operation) { // Here we try to determine the most probable winding number // contribution for the curve-chain starting with this segment. Once we // have enough confidence in the winding contribution, we can propagate // it until the next intersection or end of a curve chain. var epsilon = /*#=*/Numerical.GEOMETRIC_EPSILON, chain = [], start = segment, totalLength = 0, windingSum = 0; do { var curve = segment.getCurve(), length = curve.getLength(); chain.push({ segment: segment, curve: curve, length: length }); totalLength += length; segment = segment.getNext(); } while (segment && !segment._intersection && segment !== start); // Calculate the average winding among three evenly distributed // points along this curve chain as a representative winding number. // This selection gives a better chance of returning a correct // winding than equally dividing the curve chain, with the same // (amortised) time. for (var i = 0; i < 3; i++) { // Try the points at 1/4, 2/4 and 3/4 of the total length: var length = totalLength * (i + 1) / 4; for (var k = 0, m = chain.length; k < m; k++) { var node = chain[k], curveLength = node.length; if (length <= curveLength) { // If the selected location on the curve falls onto its // beginning or end, use the curve's center instead. if (length < epsilon || curveLength - length < epsilon) length = curveLength / 2; var curve = node.curve, path = curve._path, parent = path._parent, pt = curve.getPointAt(length), hor = curve.isHorizontal(); if (parent instanceof CompoundPath) path = parent; // While subtracting, we need to omit this curve if this // curve is contributing to the second operand and is // outside the first operand. windingSum += operation === 'subtract' && path2 && (path === path1 && path2._getWinding(pt, hor) || path === path2 && !path1._getWinding(pt, hor)) ? 0 : getWinding(pt, monoCurves, hor); break; } length -= curveLength; } } // Assign the average winding to the entire curve chain. var winding = Math.round(windingSum / 3); for (var j = chain.length - 1; j >= 0; j--) chain[j].segment._winding = winding; } /** * Private method to trace closed contours from a set of segments according * to a set of constraints-winding contribution and a custom operator. * * @param {Segment[]} segments Array of 'seed' segments for tracing closed * contours * @param {Function} the operator function that receives as argument the * winding number contribution of a curve and returns a boolean value * indicating whether the curve should be included in the final contour or * not * @return {Path[]} the contours traced */ function tracePaths(segments, operation) { pathIndex = 0; pathCount = 1; function labelSegment(seg, text, color) { var point = seg.point; var key = Math.round(point.x / (10 * scaleFactor)) + ',' + Math.round(point.y / (10 * scaleFactor)); var offset = segmentOffset[key] || 0; segmentOffset[key] = offset + 1; var size = fontSize * scaleFactor; var text = new PointText({ point: point.add( new Point(size, size / 2).add(0, offset * size * 1.2) .rotate(textAngle)), content: text, justification: 'left', fillColor: color, fontSize: fontSize }); // TODO! PointText should have pivot in #point by default! text.pivot = text.globalToLocal(text.point); text.scale(scaleFactor); text.rotate(textAngle); new Path.Line({ from: text.point, to: seg.point, strokeColor: color, strokeScaling: false }); return text; } function drawSegment(seg, other, text, index, color) { if (!window.reportSegments) return; new Path.Circle({ center: seg.point, radius: fontSize / 2 * scaleFactor, strokeColor: color, strokeScaling: false }); labelSegment(seg, '#' + pathCount + '.' + (path ? path._segments.length + 1 : 1) + ' (' + (index + 1) + '): ' + text + ' id: ' + seg._path._id + '.' + seg._index + (other ? ' -> ' + other._path._id + '.' + other._index : '') + ' v: ' + (seg._visited ? 1 : 0) + ' p: ' + seg._point + ' op: ' + isValid(seg) + ' ov: ' + !!(inter && inter._overlaps) + ' wi: ' + seg._winding + ' mu: ' + !!(inter && inter._next) , color); } for (var i = 0, j = 0; i < (window.reportWindings ? segments.length : 0); i++, j++) { var seg = segments[i]; path = seg._path, id = path._id, point = seg.point, inter = seg._intersection, ix = inter, ixs = ix && ix._segment, n1x = inter && inter._next, n1xs = n1x && n1x._segment, n2x = n1x && n1x._next, n2xs = n2x && n2x._segment, n3x = n2x && n2x._next, n3xs = n3x && n3x._segment, item = path._parent instanceof CompoundPath ? path._parent : path; if (!(id in pathIndices)) { pathIndices[id] = ++pathIndex; j = 0; } labelSegment(seg, '#' + pathIndex + '.' + (j + 1) + ' id: ' + seg._path._id + '.' + seg._index + ' ix: ' + (ixs && ixs._path._id + '.' + ixs._index + '(' + ix._id + ')' || '--') + ' n1x: ' + (n1xs && n1xs._path._id + '.' + n1xs._index + '(' + n1x._id + ')' || '--') + ' n2x: ' + (n2xs && n2xs._path._id + '.' + n2xs._index + '(' + n2x._id + ')' || '--') + ' n3x: ' + (n3xs && n3xs._path._id + '.' + n3xs._index + '(' + n3x._id + ')' || '--') + ' pt: ' + seg._point + ' ov: ' + !!(inter && inter._overlaps) + ' wi: ' + seg._winding , item.strokeColor || item.fillColor || 'black'); } var paths = [], start, otherStart, operator = operators[operation], // Adjust winding contributions for specific operations on overlaps: overlapWinding = { unite: { 1: 2 }, intersect: { 2: 1 } }[operation]; function isValid(seg, unadjusted) { if (seg._visited) return false; if (!operator) // For self-intersection, we're always valid! return true; var winding = seg._winding, inter = seg._intersection; if (inter && !unadjusted && overlapWinding && inter._overlaps) winding = overlapWinding[winding] || winding; return operator(winding); } function isStart(seg) { return seg === start || seg === otherStart; } /** * Checks if the curve from seg1 to seg2 is part of an overlap. */ function isOverlap(seg1, seg2) { var inter = seg2._intersection, overlaps = inter && inter._overlaps, values = Curve.getValues(seg1, seg2); for (var i = 0, l = overlaps && overlaps.length; i < l; i++) { if (Curve.getOverlaps(values, overlaps[i])) return true; } return false; } // If there are multiple possible intersections, find the one // that's either connecting back to start or is not visited yet, // and will be part of the boolean result: function findBestIntersection(inter, strict) { if (!inter._next) return inter; while (inter) { var seg = inter._segment, nextSeg = seg.getNext(), nextInter = nextSeg._intersection; if (window.reportSegments) { console.log('getIntersection(' + strict + ')' + ', seg: ' + seg._path._id + '.' + seg._index + ', next: ' + nextSeg._path._id + '.' + nextSeg._index + ', seg vis:' + !!seg._visited + ', next vis:' + !!nextSeg._visited + ', next start:' + isStart(nextSeg) + ', seg wi:' + seg._winding + ', next wi:' + nextSeg._winding + ', seg op:' + isValid(seg, true) + ', next op:' + (!(strict && isOverlap(seg, nextSeg)) && isValid(nextSeg, true) || !strict && nextInter && isValid(nextInter._segment, true)) + ', seg ov: ' + !!(seg._intersection && seg._intersection._overlaps) + ', next ov: ' + !!(nextSeg._intersection && nextSeg._intersection._overlaps) + ', more: ' + (!!inter._next)); } // See if this segment and the next are both not visited yet, or // are bringing us back to the beginning, and are both part of // the boolean result. // Handling overlaps correctly here is a bit tricky business, // and requires two passes, first with `strict = true`, then // `false`: In strict mode, the current segment and the next // segment are both checked for validity, and only the current // one is allowed to be an overlap (passing true for // `unadjusted` in isValid()). If this pass does not yield a // result, the non-strict mode is used, in which invalid current // segments are tolerated, and overlaps for the next segment are // allowed as long as they are valid when not adjusted. if (isStart(nextSeg) || !seg._visited && !nextSeg._visited // Self-intersections (!operator) don't need isValid() calls && (!operator // We need to use the unadjusted winding here since an // overlap crossing might have brought us here, in which // case isValid(seg, false) might be false. || (!strict || isValid(seg, true)) // Do not consider nextSeg in strict mode if it is part // of an overlap, in order to give non-overlapping // options that might follow the priority over overlaps. && (!(strict && isOverlap(seg, nextSeg)) && isValid(nextSeg, true) // If the next segment isn't valid, its intersection // to which we may switch might be, so check that. || !strict && nextInter && isValid(nextInter._segment, true)) )) return inter; // If it's no match, continue with the next linked intersection. inter = inter._next; } return null; } function findStartSegment(inter, next) { while (inter) { var seg = inter._segment; if (isStart(seg)) return seg; inter = inter[next ? '_next' : '_prev']; } } for (var i = 0, l = segments.length; i < l; i++) { var seg = segments[i], path = null, finished = false; // Do not start a chain with already visited segments, and segments // that are not going to be part of the resulting operation. if (!isValid(seg)) continue; start = otherStart = null; while (!finished) { var inter = seg._intersection; // Once we started a chain, see if there are multiple // intersections, and if so, pick the best one: if (inter && window.reportSegments) { console.log('-----\n' + '#' + pathCount + '.' + (path ? path._segments.length + 1 : 1) + ', Before getIntersection()' + ', seg: ' + seg._path._id + '.' + seg._index + ', other: ' + inter._segment._path._id + '.' + inter._segment._index); } inter = inter && (findBestIntersection(inter, true) || findBestIntersection(inter, false)) || inter; var other = inter && inter._segment; // A switched intersection means we may have changed the segment // Point to the other segment in the selected intersection. if (inter && window.reportSegments) { console.log('After getIntersection()' + ', seg: ' + seg._path._id + '.' + seg._index + ', other: ' + inter._segment._path._id + '.' + inter._segment._index); } var handleIn = path && seg._handleIn; if (!path || !other) { // Just add the first segment and all segments that have no // intersection. drawSegment(seg, null, 'add', i, 'black'); } else if (!operator) { // Resolve self-intersections drawSegment(seg, other, 'self-int', i, 'purple'); // Switch to the intersecting segment, as we need to // resolving self-Intersections. seg = other; } else if (inter._overlaps && operation !== 'intersect') { // Switch to the overlapping intersecting segment if it is // part of the boolean result. Do not adjust for overlap! if (isValid(other, true)) { drawSegment(seg, other, 'overlap-cross', i, 'orange'); seg = other; } else { drawSegment(seg, other, 'overlap-stay', i, 'orange'); } } else if (operation === 'exclude') { // We need to handle exclusion separately, as we want to // switch at each crossing. drawSegment(seg, other, 'exclude-cross', i, 'green'); seg = other; } else if (isValid(other)) { // The other segment is part of the boolean result, and we // are at crossing, switch over. drawSegment(seg, other, 'cross', i, 'green'); seg = other; } else { // Keep on truckin' drawSegment(seg, null, 'stay', i, 'blue'); } if (seg._visited) { finished = isStart(seg); if (finished) { drawSegment(seg, null, 'done', i, 'red'); } if (!finished && inter) { var found = findStartSegment(inter, true) || findStartSegment(inter, false); // This should not happen but due to numerical // imprecisions we sometimes end up in a dead-end. See // if we can find a way out by checking all valid // segments to find one that's close enough. for (var j = 0; !found && j < l; j++) { var seg2 = segments[j]; // Do not start a chain with already visited // segments, and segments that are not going to // be part of the resulting operation. if (seg !== seg2 && seg._point.isClose(seg2._point, /*#=*/Numerical.GEOMETRIC_EPSILON) && (isStart(seg2) || isValid(seg2))) { found = seg2; } } if (found) { seg = found; finished = isStart(seg); if (window.reportSegments) { console.log('Switching to: ', seg._path._id + '.' + seg._index); } if (finished) { drawSegment(seg, null, 'done inter', i, 'red'); } } } if (finished) break; if (!isValid(seg)) { // We didn't manage to switch, so stop right here. console.error('Visited segment encountered, aborting #' + pathCount + '.' + (path ? path._segments.length + 1 : 1) + ', id: ' + seg._path._id + '.' + seg._index + ', multiple: ' + !!(inter && inter._next)); break; } } if (!path) { path = new Path(Item.NO_INSERT); start = seg; otherStart = other; } if (window.reportSegments) { console.log('Adding', seg._path._id + '.' + seg._index); } // Add the segment to the path, and mark it as visited. path.add(new Segment(seg._point, handleIn, seg._handleOut)); seg._visited = true; seg = seg.getNext(); if (isStart(seg)) { drawSegment(seg, null, 'done', i, 'red'); finished = true; } } if (!path) continue; // Finish with closing the paths if necessary, correctly linking up // curves etc. if (finished) { path.firstSegment.setHandleIn(seg._handleIn); path.setClosed(true); if (window.reportSegments) { console.log('Boolean operation completed', '#' + pathCount + '.' + (path ? path._segments.length + 1 : 1)); } } else { var colors = ['cyan', 'green', 'orange', 'yellow']; var color = new Color(colors[pathCount % (colors.length - 1)]); console.error('%cBoolean operation results in open path', 'background: ' + color.toCSS() + '; color: #fff;', 'segs =', path._segments.length, 'length = ', path.getLength(), '#' + pathCount + '.' + (path ? path._segments.length + 1 : 1)); paper.project.activeLayer.addChild(path); color.alpha = 0.5; path.strokeColor = color; path.strokeWidth = 3; path.strokeScaling = false; path = null; } // Add the path to the result, while avoiding stray segments and // paths that are incomplete or cover no area. // As an optimization, only check paths with 4 or less segments // for their area, and assume that they cover an area when more. if (path && (path._segments.length > 4 || !Numerical.isZero(path.getArea()))) { paths.push(path); path = null; } pathCount++; } return paths; } return /** @lends PathItem# */{ /** * Returns the winding contribution of the given point with respect to * this PathItem. * * @param {Point} point the location for which to determine the winding * direction * @param {Boolean} horizontal whether we need to consider this point as * part of a horizontal curve * @param {Boolean} testContains whether we need to consider this point * as part of stationary points on the curve itself, used when checking * the winding about a point * @return {Number} the winding number */ _getWinding: function(point, horizontal, testContains) { return getWinding(point, this._getMonoCurves(), horizontal, testContains); }, /** * {@grouptitle Boolean Path Operations} * * Merges the geometry of the specified path from this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to unite with * @return {PathItem} the resulting path item */ unite: function(path) { return computeBoolean(this, path, 'unite'); }, /** * Intersects the geometry of the specified path with this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to intersect with * @return {PathItem} the resulting path item */ intersect: function(path) { return computeBoolean(this, path, 'intersect'); }, /** * Subtracts the geometry of the specified path from this path's * geometry and returns the result as a new path item. * * @param {PathItem} path the path to subtract * @return {PathItem} the resulting path item */ subtract: function(path) { return computeBoolean(this, path, 'subtract'); }, // Compound boolean operators combine the basic boolean operations such // as union, intersection, subtract etc. /** * Excludes the intersection of the geometry of the specified path with * this path's geometry and returns the result as a new group item. * * @param {PathItem} path the path to exclude the intersection of * @return {Group} the resulting group item */ exclude: function(path) { return computeBoolean(this, path, 'exclude'); // return finishBoolean(CompoundPath, // [this.subtract(path), path.subtract(this)], // this, path, true); }, /** * Splits the geometry of this path along the geometry of the specified * path returns the result as a new group item. * * @param {PathItem} path the path to divide by * @return {Group} the resulting group item */ divide: function(path) { return finishBoolean(Group, [this.subtract(path), this.intersect(path)], this, path, true); }, resolveCrossings: function() { var crossings = this.getCrossings(); if (!crossings.length) return this.reorient(); splitPath(CurveLocation.expand(crossings)); var paths = this._children || [this], segments = []; for (var i = 0, l = paths.length; i < l; i++) { segments.push.apply(segments, paths[i]._segments); } return finishBoolean(CompoundPath, tracePaths(segments), this, null, false).reorient(); } }; }); Path.inject(/** @lends Path# */{ /** * Private method that returns and caches all the curves in this Path, * which are monotonically decreasing or increasing in the y-direction. * Used by getWinding(). */ _getMonoCurves: function() { var monoCurves = this._monoCurves, prevCurve; // Insert curve values into a cached array function insertCurve(v) { var y0 = v[1], y1 = v[7], curve = { values: v, winding: y0 === y1 ? 0 // Horizontal : y0 > y1 ? -1 // Decreasing : 1, // Increasing // Add a reference to neighboring curves. previous: prevCurve, next: null // Always set it for hidden class optimization. }; if (prevCurve) prevCurve.next = curve; monoCurves.push(curve); prevCurve = curve; } // Handle bezier curves. We need to chop them into smaller curves with // defined orientation, by solving the derivative curve for y extrema. function handleCurve(v) { // Filter out curves of zero length. // TODO: Do not filter this here. if (Curve.getLength(v) === 0) return; var y0 = v[1], y1 = v[3], y2 = v[5], y3 = v[7]; if (Curve.isStraight(v)) { // Handling straight curves is easy. insertCurve(v); } else { // Split the curve at y extrema, to get bezier curves with clear // orientation: Calculate the derivative and find its roots. var a = 3 * (y1 - y2) - y0 + y3, b = 2 * (y0 + y2) - 4 * y1, c = y1 - y0, tMin = /*#=*/Numerical.CURVETIME_EPSILON, tMax = 1 - tMin, roots = [], // Keep then range to 0 .. 1 (excluding) in the search for y // extrema. n = Numerical.solveQuadratic(a, b, c, roots, tMin, tMax); if (n === 0) { insertCurve(v); } else { roots.sort(); var t = roots[0], parts = Curve.subdivide(v, t); insertCurve(parts[0]); if (n > 1) { // If there are two extrema, renormalize t to the range // of the second range and split again. t = (roots[1] - t) / (1 - t); // Since we already processed parts[0], we can override // the parts array with the new pair now. parts = Curve.subdivide(parts[1], t); insertCurve(parts[0]); } insertCurve(parts[1]); } } } if (!monoCurves) { // Insert curves that are monotonic in y direction into cached array monoCurves = this._monoCurves = []; var curves = this.getCurves(), segments = this._segments; for (var i = 0, l = curves.length; i < l; i++) handleCurve(curves[i].getValues()); // If the path is not closed, we need to join the end points with a // straight line, just like how filling open paths works. if (!this._closed && segments.length > 1) { var p1 = segments[segments.length - 1]._point, p2 = segments[0]._point, p1x = p1._x, p1y = p1._y, p2x = p2._x, p2y = p2._y; handleCurve([p1x, p1y, p1x, p1y, p2x, p2y, p2x, p2y]); } if (monoCurves.length > 0) { // Link first and last curves var first = monoCurves[0], last = monoCurves[monoCurves.length - 1]; first.previous = last; last.next = first; } } return monoCurves; }, /** * Returns a point that is guaranteed to be inside the path. * * @type Point * @bean */ getInteriorPoint: function() { var bounds = this.getBounds(), point = bounds.getCenter(true); if (!this.contains(point)) { // Since there is no guarantee that a poly-bezier path contains // the center of its bounding rectangle, we shoot a ray in // +x direction from the center and select a point between // consecutive intersections of the ray var curves = this._getMonoCurves(), roots = [], y = point.y, xIntercepts = []; for (var i = 0, l = curves.length; i < l; i++) { var values = curves[i].values; if ((curves[i].winding === 1 && y >= values[1] && y <= values[7] || y >= values[7] && y <= values[1]) && Curve.solveCubic(values, 1, y, roots, 0, 1) > 0) { for (var j = roots.length - 1; j >= 0; j--) xIntercepts.push(Curve.getPoint(values, roots[j]).x); } if (xIntercepts.length > 1) break; } point.x = (xIntercepts[0] + xIntercepts[1]) / 2; } return point; }, reorient: function() { // Paths that are not part of compound paths should never be counter- // clockwise for boolean operations. this.setClockwise(true); return this; } }); CompoundPath.inject(/** @lends CompoundPath# */{ /** * Private method that returns all the curves in this CompoundPath, which * are monotonically decreasing or increasing in the 'y' direction. * Used by getWinding(). */ _getMonoCurves: function() { var children = this._children, monoCurves = []; for (var i = 0, l = children.length; i < l; i++) monoCurves.push.apply(monoCurves, children[i]._getMonoCurves()); return monoCurves; }, /* * Fixes the orientation of a CompoundPath's child paths by first ordering * them according to their area, and then making sure that all children are * of different winding direction than the first child, except for when * some individual contours are disjoint, i.e. islands, they are reoriented * so that: * - The holes have opposite winding direction. * - Islands have to have the same winding direction as the first child. */ // NOTE: Does NOT handle self-intersecting CompoundPaths. reorient: function() { var children = this.removeChildren().sort(function(a, b) { return b.getBounds().getArea() - a.getBounds().getArea(); }); if (children.length > 0) { this.addChildren(children); var clockwise = children[0].isClockwise(); // Skip the first child for (var i = 1, l = children.length; i < l; i++) { var point = children[i].getInteriorPoint(), counters = 0; for (var j = i - 1; j >= 0; j--) { if (children[j].contains(point)) counters++; } children[i].setClockwise(counters % 2 === 0 && clockwise); } } return this; } });