// Acorn is a tiny, fast JavaScript parser written in JavaScript. // // Acorn was written by Marijn Haverbeke and released under an MIT // license. The Unicode regexps (for identifiers and whitespace) were // taken from [Esprima](http://esprima.org) by Ariya Hidayat. // // Git repositories for Acorn are available at // // http://marijnhaverbeke.nl/git/acorn // https://github.com/marijnh/acorn.git // // Please use the [github bug tracker][ghbt] to report issues. // // [ghbt]: https://github.com/marijnh/acorn/issues (function(exports) { "use strict"; exports.version = "0.0.1"; // The main exported interface (under `window.acorn` when in the // browser) is a `parse` function that takes a code string and // returns an abstract syntax tree as specified by [Mozilla parser // API][api], with the caveat that the SpiderMonkey-specific syntax // (`let`, `yield`, inline XML, etc) is not recognized. // // [api]: https://developer.mozilla.org/en-US/docs/SpiderMonkey/Parser_API var options, input, inputLen, sourceFile; exports.parse = function(inpt, opts) { input = String(inpt); inputLen = input.length; options = opts || {}; for (var opt in defaultOptions) if (!options.hasOwnProperty(opt)) options[opt] = defaultOptions[opt]; sourceFile = options.sourceFile || null; return parseTopLevel(options.program); }; // A second optional argument can be given to further configure // the parser process. These options are recognized: var defaultOptions = exports.defaultOptions = { // `ecmaVersion` indicates the ECMAScript version to parse. Must // be either 3 or 5. This // influences support for strict mode, the set of reserved words, and // support for getters and setter. ecmaVersion: 5, // Turn on `strictSemicolons` to prevent the parser from doing // automatic semicolon insertion. strictSemicolons: false, // When `allowTrailingCommas` is false, the parser will not allow // trailing commas in array and object literals. allowTrailingCommas: true, // By default, reserved words are not enforced. Enable // `forbidReserved` to enforce them. forbidReserved: false, // When `trackComments` is turned on, the parser will attach // `commentsBefore` and `commentsAfter` properties to AST nodes // holding arrays of strings. A single comment may appear in both // a `commentsBefore` and `commentsAfter` array (of the nodes // after and before it), but never twice in the before (or after) // array of different nodes. trackComments: false, // When `locations` is on, `loc` properties holding objects with // `start` and `end` properties in `{line, column}` form (with // line being 1-based and column 0-based) will be attached to the // nodes. locations: false, // Nodes have their start and end characters offsets recorded in // `start` and `end` properties (directly on the node, rather than // the `loc` object, which holds line/column data. To also add a // [semi-standardized][range] `range` property holding a `[start, // end]` array with the same numbers, set the `ranges` option to // `true`. // // [range]: https://bugzilla.mozilla.org/show_bug.cgi?id=745678 ranges: false, // It is possible to parse multiple files into a single AST by // passing the tree produced by parsing the first file as // `program` option in subsequent parses. This will add the // toplevel forms of the parsed file to the `Program` (top) node // of an existing parse tree. program: null, // When `location` is on, you can pass this to record the source // file in every node's `loc` object. sourceFile: null }; // The `getLineInfo` function is mostly useful when the // `locations` option is off (for performance reasons) and you // want to find the line/column position for a given character // offset. `input` should be the code string that the offset refers // into. var getLineInfo = exports.getLineInfo = function(input, offset) { for (var line = 1, cur = 0;;) { lineBreak.lastIndex = cur; var match = lineBreak.exec(input); if (match && match.index < offset) { ++line; cur = match.index + match[0].length; } else break; } return {line: line, column: offset - cur}; }; // Acorn is organized as a tokenizer and a recursive-descent parser. // Both use (closure-)global variables to keep their state and // communicate. We already saw the `options`, `input`, and // `inputLen` variables above (set in `parse`). // The current position of the tokenizer in the input. var tokPos; // The start and end offsets of the current token. var tokStart, tokEnd; // When `options.locations` is true, these hold objects // containing the tokens start and end line/column pairs. var tokStartLoc, tokEndLoc; // The type and value of the current token. Token types are objects, // named by variables against which they can be compared, and // holding properties that describe them (indicating, for example, // the precedence of an infix operator, and the original name of a // keyword token). The kind of value that's held in `tokVal` depends // on the type of the token. For literals, it is the literal value, // for operators, the operator name, and so on. var tokType, tokVal; // These are used to hold arrays of comments when // `options.trackComments` is true. var tokCommentsBefore, tokCommentsAfter; // Interal state for the tokenizer. To distinguish between division // operators and regular expressions, it remembers whether the last // token was one that is allowed to be followed by an expression. // (If it is, a slash is probably a regexp, if it isn't it's a // division operator. See the `parseStatement` function for a // caveat.) var tokRegexpAllowed, tokComments; // When `options.locations` is true, these are used to keep // track of the current line, and know when a new line has been // entered. See the `curLineLoc` function. var tokCurLine, tokLineStart, tokLineStartNext; // These store the position of the previous token, which is useful // when finishing a node and assigning its `end` position. var lastStart, lastEnd, lastEndLoc; // This is the parser's state. `inFunction` is used to reject // `return` statements outside of functions, `labels` to verify that // `break` and `continue` have somewhere to jump to, and `strict` // indicates whether strict mode is on. var inFunction, labels, strict; // This function is used to raise exceptions on parse errors. It // takes either a `{line, column}` object or an offset integer (into // the current `input`) as `pos` argument. It attaches the position // to the end of the error message, and then raises a `SyntaxError` // with that message. function raise(pos, message) { if (typeof pos == "number") pos = getLineInfo(input, pos); message += " (" + pos.line + ":" + pos.column + ")"; throw new SyntaxError(message); } // ## Token types // The assignment of fine-grained, information-carrying type objects // allows the tokenizer to store the information it has about a // token in a way that is very cheap for the parser to look up. // All token type variables start with an underscore, to make them // easy to recognize. // These are the general types. The `type` property is only used to // make them recognizeable when debugging. var _num = {type: "num"}, _regexp = {type: "regexp"}, _string = {type: "string"}; var _name = {type: "name"}, _eof = {type: "eof"}; // Keyword tokens. The `keyword` property (also used in keyword-like // operators) indicates that the token originated from an // identifier-like word, which is used when parsing property names. // // The `beforeExpr` property is used to disambiguate between regular // expressions and divisions. It is set on all token types that can // be followed by an expression (thus, a slash after them would be a // regular expression). // // `isLoop` marks a keyword as starting a loop, which is important // to know when parsing a label, in order to allow or disallow // continue jumps to that label. var _break = {keyword: "break"}, _case = {keyword: "case", beforeExpr: true}, _catch = {keyword: "catch"}; var _continue = {keyword: "continue"}, _debugger = {keyword: "debugger"}, _default = {keyword: "default"}; var _do = {keyword: "do", isLoop: true}, _else = {keyword: "else", beforeExpr: true}; var _finally = {keyword: "finally"}, _for = {keyword: "for", isLoop: true}, _function = {keyword: "function"}; var _if = {keyword: "if"}, _return = {keyword: "return", beforeExpr: true}, _switch = {keyword: "switch"}; var _throw = {keyword: "throw", beforeExpr: true}, _try = {keyword: "try"}, _var = {keyword: "var"}; var _while = {keyword: "while", isLoop: true}, _with = {keyword: "with"}, _new = {keyword: "new", beforeExpr: true}; var _this = {keyword: "this"}; // The keywords that denote values. var _null = {keyword: "null", atomValue: null}, _true = {keyword: "true", atomValue: true}; var _false = {keyword: "false", atomValue: false}; // Some keywords are treated as regular operators. `in` sometimes // (when parsing `for`) needs to be tested against specifically, so // we assign a variable name to it for quick comparing. var _in = {keyword: "in", binop: 7, beforeExpr: true}; // Map keyword names to token types. var keywordTypes = {"break": _break, "case": _case, "catch": _catch, "continue": _continue, "debugger": _debugger, "default": _default, "do": _do, "else": _else, "finally": _finally, "for": _for, "function": _function, "if": _if, "return": _return, "switch": _switch, "throw": _throw, "try": _try, "var": _var, "while": _while, "with": _with, "null": _null, "true": _true, "false": _false, "new": _new, "in": _in, "instanceof": {keyword: "instanceof", binop: 7}, "this": _this, "typeof": {keyword: "typeof", prefix: true}, "void": {keyword: "void", prefix: true}, "delete": {keyword: "delete", prefix: true}}; // Punctuation token types. Again, the `type` property is purely for debugging. var _bracketL = {type: "[", beforeExpr: true}, _bracketR = {type: "]"}, _braceL = {type: "{", beforeExpr: true}; var _braceR = {type: "}"}, _parenL = {type: "(", beforeExpr: true}, _parenR = {type: ")"}; var _comma = {type: ",", beforeExpr: true}, _semi = {type: ";", beforeExpr: true}; var _colon = {type: ":", beforeExpr: true}, _dot = {type: "."}, _question = {type: "?", beforeExpr: true}; // Operators. These carry several kinds of properties to help the // parser use them properly (the presence of these properties is // what categorizes them as operators). // // `binop`, when present, specifies that this operator is a binary // operator, and will refer to its precedence. // // `prefix` and `postfix` mark the operator as a prefix or postfix // unary operator. `isUpdate` specifies that the node produced by // the operator should be of type UpdateExpression rather than // simply UnaryExpression (`++` and `--`). // // `isAssign` marks all of `=`, `+=`, `-=` etcetera, which act as // binary operators with a very low precedence, that should result // in AssignmentExpression nodes. var _slash = {binop: 10, beforeExpr: true}, _eq = {isAssign: true, beforeExpr: true}; var _assign = {isAssign: true, beforeExpr: true}, _plusmin = {binop: 9, prefix: true, beforeExpr: true}; var _incdec = {postfix: true, prefix: true, isUpdate: true}, _prefix = {prefix: true, beforeExpr: true}; var _bin1 = {binop: 1, beforeExpr: true}, _bin2 = {binop: 2, beforeExpr: true}; var _bin3 = {binop: 3, beforeExpr: true}, _bin4 = {binop: 4, beforeExpr: true}; var _bin5 = {binop: 5, beforeExpr: true}, _bin6 = {binop: 6, beforeExpr: true}; var _bin7 = {binop: 7, beforeExpr: true}, _bin8 = {binop: 8, beforeExpr: true}; var _bin10 = {binop: 10, beforeExpr: true}; // This is a trick taken from Esprima. It turns out that, on // non-Chrome browsers, to check whether a string is in a set, a // predicate containing a big ugly `switch` statement is faster than // a regular expression, and on Chrome the two are about on par. // This function uses `eval` (non-lexical) to produce such a // predicate from a space-separated string of words. // // It starts by sorting the words by length. function makePredicate(words) { words = words.split(" "); var f = "", cats = []; out: for (var i = 0; i < words.length; ++i) { for (var j = 0; j < cats.length; ++j) if (cats[j][0].length == words[i].length) { cats[j].push(words[i]); continue out; } cats.push([words[i]]); } function compareTo(arr) { if (arr.length == 1) return f += "return str === " + JSON.stringify(arr[0]) + ";"; f += "switch(str){"; for (var i = 0; i < arr.length; ++i) f += "case " + JSON.stringify(arr[i]) + ":"; f += "return true}return false;"; } // When there are more than three length categories, an outer // switch first dispatches on the lengths, to save on comparisons. if (cats.length > 3) { cats.sort(function(a, b) {return b.length - a.length;}); f += "switch(str.length){"; for (var i = 0; i < cats.length; ++i) { var cat = cats[i]; f += "case " + cat[0].length + ":"; compareTo(cat); } f += "}"; // Otherwise, simply generate a flat `switch` statement. } else { compareTo(words); } return new Function("str", f); } // The ECMAScript 3 reserved word list. var isReservedWord3 = makePredicate("abstract boolean byte char class double enum export extends final float goto implements import int interface long native package private protected public short static super synchronized throws transient volatile"); // ECMAScript 5 reserved words. var isReservedWord5 = makePredicate("class enum extends super const export import"); // The additional reserved words in strict mode. var isStrictReservedWord = makePredicate("implements interface let package private protected public static yield"); // The forbidden variable names in strict mode. var isStrictBadIdWord = makePredicate("eval arguments"); // And the keywords. var isKeyword = makePredicate("break case catch continue debugger default do else finally for function if return switch throw try var while with null true false instanceof typeof void delete new in this"); // ## Character categories // Big ugly regular expressions that match characters in the // whitespace, identifier, and identifier-start categories. These // are only applied when a character is found to actually have a // code point above 128. var nonASCIIwhitespace = /[\u1680\u180e\u2000-\u200a\u2028\u2029\u202f\u205f\u3000\ufeff]/; var nonASCIIidentifierStartChars = "\xaa\xb5\xba\xc0-\xd6\xd8-\xf6\xf8-\u02c1\u02c6-\u02d1\u02e0-\u02e4\u02ec\u02ee\u0370-\u0374\u0376\u0377\u037a-\u037d\u0386\u0388-\u038a\u038c\u038e-\u03a1\u03a3-\u03f5\u03f7-\u0481\u048a-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05d0-\u05ea\u05f0-\u05f2\u0620-\u064a\u066e\u066f\u0671-\u06d3\u06d5\u06e5\u06e6\u06ee\u06ef\u06fa-\u06fc\u06ff\u0710\u0712-\u072f\u074d-\u07a5\u07b1\u07ca-\u07ea\u07f4\u07f5\u07fa\u0800-\u0815\u081a\u0824\u0828\u0840-\u0858\u08a0\u08a2-\u08ac\u0904-\u0939\u093d\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097f\u0985-\u098c\u098f\u0990\u0993-\u09a8\u09aa-\u09b0\u09b2\u09b6-\u09b9\u09bd\u09ce\u09dc\u09dd\u09df-\u09e1\u09f0\u09f1\u0a05-\u0a0a\u0a0f\u0a10\u0a13-\u0a28\u0a2a-\u0a30\u0a32\u0a33\u0a35\u0a36\u0a38\u0a39\u0a59-\u0a5c\u0a5e\u0a72-\u0a74\u0a85-\u0a8d\u0a8f-\u0a91\u0a93-\u0aa8\u0aaa-\u0ab0\u0ab2\u0ab3\u0ab5-\u0ab9\u0abd\u0ad0\u0ae0\u0ae1\u0b05-\u0b0c\u0b0f\u0b10\u0b13-\u0b28\u0b2a-\u0b30\u0b32\u0b33\u0b35-\u0b39\u0b3d\u0b5c\u0b5d\u0b5f-\u0b61\u0b71\u0b83\u0b85-\u0b8a\u0b8e-\u0b90\u0b92-\u0b95\u0b99\u0b9a\u0b9c\u0b9e\u0b9f\u0ba3\u0ba4\u0ba8-\u0baa\u0bae-\u0bb9\u0bd0\u0c05-\u0c0c\u0c0e-\u0c10\u0c12-\u0c28\u0c2a-\u0c33\u0c35-\u0c39\u0c3d\u0c58\u0c59\u0c60\u0c61\u0c85-\u0c8c\u0c8e-\u0c90\u0c92-\u0ca8\u0caa-\u0cb3\u0cb5-\u0cb9\u0cbd\u0cde\u0ce0\u0ce1\u0cf1\u0cf2\u0d05-\u0d0c\u0d0e-\u0d10\u0d12-\u0d3a\u0d3d\u0d4e\u0d60\u0d61\u0d7a-\u0d7f\u0d85-\u0d96\u0d9a-\u0db1\u0db3-\u0dbb\u0dbd\u0dc0-\u0dc6\u0e01-\u0e30\u0e32\u0e33\u0e40-\u0e46\u0e81\u0e82\u0e84\u0e87\u0e88\u0e8a\u0e8d\u0e94-\u0e97\u0e99-\u0e9f\u0ea1-\u0ea3\u0ea5\u0ea7\u0eaa\u0eab\u0ead-\u0eb0\u0eb2\u0eb3\u0ebd\u0ec0-\u0ec4\u0ec6\u0edc-\u0edf\u0f00\u0f40-\u0f47\u0f49-\u0f6c\u0f88-\u0f8c\u1000-\u102a\u103f\u1050-\u1055\u105a-\u105d\u1061\u1065\u1066\u106e-\u1070\u1075-\u1081\u108e\u10a0-\u10c5\u10c7\u10cd\u10d0-\u10fa\u10fc-\u1248\u124a-\u124d\u1250-\u1256\u1258\u125a-\u125d\u1260-\u1288\u128a-\u128d\u1290-\u12b0\u12b2-\u12b5\u12b8-\u12be\u12c0\u12c2-\u12c5\u12c8-\u12d6\u12d8-\u1310\u1312-\u1315\u1318-\u135a\u1380-\u138f\u13a0-\u13f4\u1401-\u166c\u166f-\u167f\u1681-\u169a\u16a0-\u16ea\u16ee-\u16f0\u1700-\u170c\u170e-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176c\u176e-\u1770\u1780-\u17b3\u17d7\u17dc\u1820-\u1877\u1880-\u18a8\u18aa\u18b0-\u18f5\u1900-\u191c\u1950-\u196d\u1970-\u1974\u1980-\u19ab\u19c1-\u19c7\u1a00-\u1a16\u1a20-\u1a54\u1aa7\u1b05-\u1b33\u1b45-\u1b4b\u1b83-\u1ba0\u1bae\u1baf\u1bba-\u1be5\u1c00-\u1c23\u1c4d-\u1c4f\u1c5a-\u1c7d\u1ce9-\u1cec\u1cee-\u1cf1\u1cf5\u1cf6\u1d00-\u1dbf\u1e00-\u1f15\u1f18-\u1f1d\u1f20-\u1f45\u1f48-\u1f4d\u1f50-\u1f57\u1f59\u1f5b\u1f5d\u1f5f-\u1f7d\u1f80-\u1fb4\u1fb6-\u1fbc\u1fbe\u1fc2-\u1fc4\u1fc6-\u1fcc\u1fd0-\u1fd3\u1fd6-\u1fdb\u1fe0-\u1fec\u1ff2-\u1ff4\u1ff6-\u1ffc\u2071\u207f\u2090-\u209c\u2102\u2107\u210a-\u2113\u2115\u2119-\u211d\u2124\u2126\u2128\u212a-\u212d\u212f-\u2139\u213c-\u213f\u2145-\u2149\u214e\u2160-\u2188\u2c00-\u2c2e\u2c30-\u2c5e\u2c60-\u2ce4\u2ceb-\u2cee\u2cf2\u2cf3\u2d00-\u2d25\u2d27\u2d2d\u2d30-\u2d67\u2d6f\u2d80-\u2d96\u2da0-\u2da6\u2da8-\u2dae\u2db0-\u2db6\u2db8-\u2dbe\u2dc0-\u2dc6\u2dc8-\u2dce\u2dd0-\u2dd6\u2dd8-\u2dde\u2e2f\u3005-\u3007\u3021-\u3029\u3031-\u3035\u3038-\u303c\u3041-\u3096\u309d-\u309f\u30a1-\u30fa\u30fc-\u30ff\u3105-\u312d\u3131-\u318e\u31a0-\u31ba\u31f0-\u31ff\u3400-\u4db5\u4e00-\u9fcc\ua000-\ua48c\ua4d0-\ua4fd\ua500-\ua60c\ua610-\ua61f\ua62a\ua62b\ua640-\ua66e\ua67f-\ua697\ua6a0-\ua6ef\ua717-\ua71f\ua722-\ua788\ua78b-\ua78e\ua790-\ua793\ua7a0-\ua7aa\ua7f8-\ua801\ua803-\ua805\ua807-\ua80a\ua80c-\ua822\ua840-\ua873\ua882-\ua8b3\ua8f2-\ua8f7\ua8fb\ua90a-\ua925\ua930-\ua946\ua960-\ua97c\ua984-\ua9b2\ua9cf\uaa00-\uaa28\uaa40-\uaa42\uaa44-\uaa4b\uaa60-\uaa76\uaa7a\uaa80-\uaaaf\uaab1\uaab5\uaab6\uaab9-\uaabd\uaac0\uaac2\uaadb-\uaadd\uaae0-\uaaea\uaaf2-\uaaf4\uab01-\uab06\uab09-\uab0e\uab11-\uab16\uab20-\uab26\uab28-\uab2e\uabc0-\uabe2\uac00-\ud7a3\ud7b0-\ud7c6\ud7cb-\ud7fb\uf900-\ufa6d\ufa70-\ufad9\ufb00-\ufb06\ufb13-\ufb17\ufb1d\ufb1f-\ufb28\ufb2a-\ufb36\ufb38-\ufb3c\ufb3e\ufb40\ufb41\ufb43\ufb44\ufb46-\ufbb1\ufbd3-\ufd3d\ufd50-\ufd8f\ufd92-\ufdc7\ufdf0-\ufdfb\ufe70-\ufe74\ufe76-\ufefc\uff21-\uff3a\uff41-\uff5a\uff66-\uffbe\uffc2-\uffc7\uffca-\uffcf\uffd2-\uffd7\uffda-\uffdc"; var nonASCIIidentifierChars = "\u0371-\u0374\u0483-\u0487\u0591-\u05bd\u05bf\u05c1\u05c2\u05c4\u05c5\u05c7\u0610-\u061a\u0620-\u0649\u0672-\u06d3\u06e7-\u06e8\u06fb-\u06fc\u0730-\u074a\u0800-\u0814\u081b-\u0823\u0825-\u0827\u0829-\u082d\u0840-\u0857\u08e4-\u08fe\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\u0966-\u096f\u0981-\u0983\u09bc\u09be-\u09c4\u09c7\u09c8\u09d7\u09df-\u09e0\u0a01-\u0a03\u0a3c\u0a3e-\u0a42\u0a47\u0a48\u0a4b-\u0a4d\u0a51\u0a66-\u0a71\u0a75\u0a81-\u0a83\u0abc\u0abe-\u0ac5\u0ac7-\u0ac9\u0acb-\u0acd\u0ae2-\u0ae3\u0ae6-\u0aef\u0b01-\u0b03\u0b3c\u0b3e-\u0b44\u0b47\u0b48\u0b4b-\u0b4d\u0b56\u0b57\u0b5f-\u0b60\u0b66-\u0b6f\u0b82\u0bbe-\u0bc2\u0bc6-\u0bc8\u0bca-\u0bcd\u0bd7\u0be6-\u0bef\u0c01-\u0c03\u0c46-\u0c48\u0c4a-\u0c4d\u0c55\u0c56\u0c62-\u0c63\u0c66-\u0c6f\u0c82\u0c83\u0cbc\u0cbe-\u0cc4\u0cc6-\u0cc8\u0cca-\u0ccd\u0cd5\u0cd6\u0ce2-\u0ce3\u0ce6-\u0cef\u0d02\u0d03\u0d46-\u0d48\u0d57\u0d62-\u0d63\u0d66-\u0d6f\u0d82\u0d83\u0dca\u0dcf-\u0dd4\u0dd6\u0dd8-\u0ddf\u0df2\u0df3\u0e34-\u0e3a\u0e40-\u0e45\u0e50-\u0e59\u0eb4-\u0eb9\u0ec8-\u0ecd\u0ed0-\u0ed9\u0f18\u0f19\u0f20-\u0f29\u0f35\u0f37\u0f39\u0f41-\u0f47\u0f71-\u0f84\u0f86-\u0f87\u0f8d-\u0f97\u0f99-\u0fbc\u0fc6\u1000-\u1029\u1040-\u1049\u1067-\u106d\u1071-\u1074\u1082-\u108d\u108f-\u109d\u135d-\u135f\u170e-\u1710\u1720-\u1730\u1740-\u1750\u1772\u1773\u1780-\u17b2\u17dd\u17e0-\u17e9\u180b-\u180d\u1810-\u1819\u1920-\u192b\u1930-\u193b\u1951-\u196d\u19b0-\u19c0\u19c8-\u19c9\u19d0-\u19d9\u1a00-\u1a15\u1a20-\u1a53\u1a60-\u1a7c\u1a7f-\u1a89\u1a90-\u1a99\u1b46-\u1b4b\u1b50-\u1b59\u1b6b-\u1b73\u1bb0-\u1bb9\u1be6-\u1bf3\u1c00-\u1c22\u1c40-\u1c49\u1c5b-\u1c7d\u1cd0-\u1cd2\u1d00-\u1dbe\u1e01-\u1f15\u200c\u200d\u203f\u2040\u2054\u20d0-\u20dc\u20e1\u20e5-\u20f0\u2d81-\u2d96\u2de0-\u2dff\u3021-\u3028\u3099\u309a\ua640-\ua66d\ua674-\ua67d\ua69f\ua6f0-\ua6f1\ua7f8-\ua800\ua806\ua80b\ua823-\ua827\ua880-\ua881\ua8b4-\ua8c4\ua8d0-\ua8d9\ua8f3-\ua8f7\ua900-\ua909\ua926-\ua92d\ua930-\ua945\ua980-\ua983\ua9b3-\ua9c0\uaa00-\uaa27\uaa40-\uaa41\uaa4c-\uaa4d\uaa50-\uaa59\uaa7b\uaae0-\uaae9\uaaf2-\uaaf3\uabc0-\uabe1\uabec\uabed\uabf0-\uabf9\ufb20-\ufb28\ufe00-\ufe0f\ufe20-\ufe26\ufe33\ufe34\ufe4d-\ufe4f\uff10-\uff19\uff3f"; var nonASCIIidentifierStart = new RegExp("[" + nonASCIIidentifierStartChars + "]"); var nonASCIIidentifier = new RegExp("[" + nonASCIIidentifierStartChars + nonASCIIidentifierChars + "]"); // Whether a single character denotes a newline. var newline = /[\n\r\u2028\u2029]/; // Matches a whole line break (where CRLF is considered a single // line break). Used to count lines. var lineBreak = /\r\n|[\n\r\u2028\u2029]/g; // Test whether a given character code starts an identifier. function isIdentifierStart(code) { if (code < 65) return code === 36; if (code < 91) return true; if (code < 97) return code === 95; if (code < 123)return true; return code >= 0xaa && nonASCIIidentifierStart.test(String.fromCharCode(code)); } // Test whether a given character is part of an identifier. function isIdentifierChar(code) { if (code < 48) return code === 36; if (code < 58) return true; if (code < 65) return false; if (code < 91) return true; if (code < 97) return code === 95; if (code < 123)return true; return code >= 0xaa && nonASCIIidentifier.test(String.fromCharCode(code)); } // ## Tokenizer // These are used when `options.locations` is on, in order to track // the current line number and start of line offset, in order to set // `tokStartLoc` and `tokEndLoc`. function nextLineStart() { lineBreak.lastIndex = tokLineStart; var match = lineBreak.exec(input); return match ? match.index + match[0].length : input.length + 1; } function curLineLoc() { while (tokLineStartNext <= tokPos) { ++tokCurLine; tokLineStart = tokLineStartNext; tokLineStartNext = nextLineStart(); } return {line: tokCurLine, column: tokPos - tokLineStart}; } // Reset the token state. Used at the start of a parse. function initTokenState() { tokCurLine = 1; tokPos = tokLineStart = 0; tokLineStartNext = nextLineStart(); tokRegexpAllowed = true; tokComments = null; skipSpace(); } // Called at the end of every token. Sets `tokEnd`, `tokVal`, // `tokCommentsAfter`, and `tokRegexpAllowed`, and skips the space // after the token, so that the next one's `tokStart` will point at // the right position. function finishToken(type, val) { tokEnd = tokPos; if (options.locations) tokEndLoc = curLineLoc(); tokType = type; skipSpace(); tokVal = val; tokCommentsAfter = tokComments; tokRegexpAllowed = type.beforeExpr; } function skipBlockComment() { var end = input.indexOf("*/", tokPos += 2); if (end === -1) raise(tokPos - 2, "Unterminated comment"); if (options.trackComments) (tokComments || (tokComments = [])).push(input.slice(tokPos, end)); tokPos = end + 2; } function skipLineComment() { var start = tokPos; var ch = input.charCodeAt(tokPos+=2); while (tokPos < inputLen && ch !== 10 && ch !== 13 && ch !== 8232 && ch !== 8329) { ++tokPos; ch = input.charCodeAt(tokPos); } if (options.trackComments) (tokComments || (tokComments = [])).push(input.slice(start, tokPos)); } // Called at the start of the parse and after every token. Skips // whitespace and comments, and, if `options.trackComments` is on, // will store all skipped comments in `tokComments`. function skipSpace() { tokComments = null; while (tokPos < inputLen) { var ch = input.charCodeAt(tokPos); if (ch === 47) { // '/' var next = input.charCodeAt(tokPos+1); if (next === 42) { // '*' skipBlockComment(); } else if (next === 47) { // '/' skipLineComment(); } else break; } else if (ch < 14 && ch > 8) { ++tokPos; } else if (ch === 32 || ch === 160) { // ' ', '\xa0' ++tokPos; } else if (ch >= 5760 && nonASCIIwhitespace.test(String.fromCharCode(ch))) { ++tokPos; } else { break; } } } // ### Token reading // This is the function that is called to fetch the next token. It // is somewhat obscure, because it works in character codes rather // than characters, and because operator parsing has been inlined // into it. // // All in the name of speed. // // The `forceRegexp` parameter is used in the one case where the // `tokRegexpAllowed` trick does not work. See `parseStatement`. function readToken(forceRegexp) { tokStart = tokPos; if (options.locations) tokStartLoc = curLineLoc(); tokCommentsBefore = tokComments; if (forceRegexp) return readRegexp(); if (tokPos >= inputLen) return finishToken(_eof); var code = input.charCodeAt(tokPos); // Identifier or keyword. '\uXXXX' sequences are allowed in // identifiers, so '\' also dispatches to that. if (isIdentifierStart(code) || code === 92 /* '\' */) return readWord(); var next = input.charCodeAt(tokPos+1); switch(code) { // The interpretation of a dot depends on whether it is followed // by a digit. case 46: // '.' if (next >= 48 && next <= 57) return readNumber(String.fromCharCode(code)); ++tokPos; return finishToken(_dot); // Punctuation tokens. case 40: ++tokPos; return finishToken(_parenL); case 41: ++tokPos; return finishToken(_parenR); case 59: ++tokPos; return finishToken(_semi); case 44: ++tokPos; return finishToken(_comma); case 91: ++tokPos; return finishToken(_bracketL); case 93: ++tokPos; return finishToken(_bracketR); case 123: ++tokPos; return finishToken(_braceL); case 125: ++tokPos; return finishToken(_braceR); case 58: ++tokPos; return finishToken(_colon); case 63: ++tokPos; return finishToken(_question); // '0x' is a hexadecimal number. case 48: // '0' if (next === 120 || next === 88) return readHexNumber(); // Anything else beginning with a digit is an integer, octal // number, or float. case 49: case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57: // 1-9 return readNumber(String.fromCharCode(code)); // Quotes produce strings. case 34: case 39: // '"', "'" return readString(code); // Operators are parsed inline in tiny state machines. '=' (61) is // often referred to. `finishOp` simply skips the amount of // characters it is given as second argument, and returns a token // of the type given by its first argument. case 47: // '/' if (tokRegexpAllowed) {++tokPos; return readRegexp();} if (next === 61) return finishOp(_assign, 2); return finishOp(_slash, 1); case 37: case 42: // '%*' if (next === 61) return finishOp(_assign, 2); return finishOp(_bin10, 1); case 124: case 38: // '|&' if (next === code) return finishOp(code === 124 ? _bin1 : _bin2, 2); if (next === 61) return finishOp(_assign, 2); return finishOp(code === 124 ? _bin3 : _bin5, 1); case 94: // '^' if (next === 61) return finishOp(_assign, 2); return finishOp(_bin4, 1); case 43: case 45: // '+-' if (next === code) return finishOp(_incdec, 2); if (next === 61) return finishOp(_assign, 2); return finishOp(_plusmin, 1); case 60: case 62: // '<>' var size = 1; if (next === code) { size = code === 62 && input.charCodeAt(tokPos+2) === 62 ? 3 : 2; if (input.charCodeAt(tokPos + size) === 61) return finishOp(_assign, size + 1); return finishOp(_bin8, size); } if (next === 61) size = input.charCodeAt(tokPos+2) === 61 ? 3 : 2; return finishOp(_bin7, size); case 61: case 33: // '=!' if (next === 61) return finishOp(_bin6, input.charCodeAt(tokPos+2) === 61 ? 3 : 2); return finishOp(code === 61 ? _eq : _prefix, 1); case 126: // '~' return finishOp(_prefix, 1); } // If we are here, we either found a non-ASCII identifier // character, or something that's entirely disallowed. var ch = String.fromCharCode(code); if (ch === "\\" || nonASCIIidentifierStart.test(ch)) return readWord(); raise(tokPos, "Unexpected character '" + ch + "'"); } function finishOp(type, size) { var str = input.slice(tokPos, tokPos + size); tokPos += size; finishToken(type, str); } // Parse a regular expression. Some context-awareness is necessary, // since a '/' inside a '[]' set does not end the expression. function readRegexp() { var content = "", escaped, inClass, start = tokPos; for (;;) { if (tokPos >= inputLen) raise(start, "Unterminated regular expression"); var ch = input.charAt(tokPos); if (newline.test(ch)) raise(start, "Unterminated regular expression"); if (!escaped) { if (ch === "[") inClass = true; else if (ch === "]" && inClass) inClass = false; else if (ch === "/" && !inClass) break; escaped = ch === "\\"; } else escaped = false; ++tokPos; } var content = input.slice(start, tokPos); ++tokPos; // Need to use `readWord1` because '\uXXXX' sequences are allowed // here (don't ask). var mods = readWord1(); if (mods && !/^[gmsiy]*$/.test(mods)) raise(start, "Invalid regexp flag"); return finishToken(_regexp, new RegExp(content, mods)); } // Read an integer in the given radix. Return null if zero digits // were read, the integer value otherwise. When `len` is given, this // will return `null` unless the integer has exactly `len` digits. function readInt(radix, len) { var start = tokPos, total = 0; for (;;) { var code = input.charCodeAt(tokPos), val; if (code >= 97) val = code - 97 + 10; // a else if (code >= 65) val = code - 65 + 10; // A else if (code >= 48 && code <= 57) val = code - 48; // 0-9 else val = Infinity; if (val >= radix) break; ++tokPos; total = total * radix + val; } if (tokPos === start || len != null && tokPos - start !== len) return null; return total; } function readHexNumber() { tokPos += 2; // 0x var val = readInt(16); if (val == null) raise(tokStart + 2, "Expected hexadecimal number"); if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number"); return finishToken(_num, val); } // Read an integer, octal integer, or floating-point number. function readNumber(ch) { var start = tokPos, isFloat = ch === "."; if (!isFloat && readInt(10) == null) raise(start, "Invalid number"); if (isFloat || input.charAt(tokPos) === ".") { var next = input.charAt(++tokPos); if (next === "-" || next === "+") ++tokPos; if (readInt(10) === null && ch === ".") raise(start, "Invalid number"); isFloat = true; } if (/e/i.test(input.charAt(tokPos))) { var next = input.charAt(++tokPos); if (next === "-" || next === "+") ++tokPos; if (readInt(10) === null) raise(start, "Invalid number") isFloat = true; } if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number"); var str = input.slice(start, tokPos), val; if (isFloat) val = parseFloat(str); else if (ch !== "0" || str.length === 1) val = parseInt(str, 10); else if (/[89]/.test(str) || strict) raise(start, "Invalid number"); else val = parseInt(str, 8); return finishToken(_num, val); } // Read a string value, interpreting backslash-escapes. function readString(quote) { tokPos++; var str = []; for (;;) { if (tokPos >= inputLen) raise(tokStart, "Unterminated string constant"); var ch = input.charCodeAt(tokPos); if (ch === quote) { ++tokPos; return finishToken(_string, String.fromCharCode.apply(null, str)); } if (ch === 92) { // '\' ch = input.charCodeAt(++tokPos); var octal = /^[0-7]+/.exec(input.slice(tokPos, tokPos + 3)); if (octal) octal = octal[0]; while (octal && parseInt(octal, 8) > 255) octal = octal.slice(0, octal.length - 1); if (octal === "0") octal = null; ++tokPos; if (octal) { if (strict) raise(tokPos - 2, "Octal literal in strict mode"); str.push(parseInt(octal, 8)); tokPos += octal.length - 1; } else { switch (ch) { case 110: str.push(10); break; // 'n' -> '\n' case 114: str.push(13); break; // 'r' -> '\r' case 120: str.push(readHexChar(2)); break; // 'x' case 117: str.push(readHexChar(4)); break; // 'u' case 85: str.push(readHexChar(8)); break; // 'U' case 116: str.push(9); break; // 't' -> '\t' case 98: str.push(8); break; // 'b' -> '\b' case 118: str.push(11); break; // 'v' -> '\u000b' case 102: str.push(12); break; // 'f' -> '\f' case 48: str.push(0); break; // 0 -> '\0' case 13: if (input.charCodeAt(tokPos) === 10) ++tokPos; // '\r\n' case 10: break; // ' \n' default: str.push(ch); break; } } } else { if (ch === 13 || ch === 10 || ch === 8232 || ch === 8329) raise(tokStart, "Unterminated string constant"); if (ch !== 92) str.push(ch); // '\' ++tokPos; } } } // Used to read character escape sequences ('\x', '\u', '\U'). function readHexChar(len) { var n = readInt(16, len); if (n === null) raise(tokStart, "Bad character escape sequence"); return n; } // Used to signal to callers of `readWord1` whether the word // contained any escape sequences. This is needed because words with // escape sequences must not be interpreted as keywords. var containsEsc; // Read an identifier, and return it as a string. Sets `containsEsc` // to whether the word contained a '\u' escape. // // Only builds up the word character-by-character when it actually // containeds an escape, as a micro-optimization. function readWord1() { containsEsc = false; var word, first = true, start = tokPos; for (;;) { var ch = input.charCodeAt(tokPos); if (isIdentifierChar(ch)) { if (containsEsc) word += input.charAt(tokPos); ++tokPos; } else if (ch === 92) { // "\" if (!containsEsc) word = input.slice(start, tokPos); containsEsc = true; if (input.charCodeAt(++tokPos) != 117) // "u" raise(tokPos, "Expecting Unicode escape sequence \\uXXXX"); ++tokPos; var esc = readHexChar(4); var escStr = String.fromCharCode(esc); if (!escStr) raise(tokPos - 1, "Invalid Unicode escape"); if (!(first ? isIdentifierStart(esc) : isIdentifierChar(esc))) raise(tokPos - 4, "Invalid Unicode escape"); word += escStr; } else { break; } first = false; } return containsEsc ? word : input.slice(start, tokPos); } // Read an identifier or keyword token. Will check for reserved // words when necessary. function readWord() { var word = readWord1(); var type = _name; if (!containsEsc) { if (isKeyword(word)) type = keywordTypes[word]; else if (options.forbidReserved && (options.ecmaVersion === 3 ? isReservedWord3 : isReservedWord5)(word) || strict && isStrictReservedWord(word)) raise(tokStart, "The keyword '" + word + "' is reserved"); } return finishToken(type, word); } // ## Parser // A recursive descent parser operates by defining functions for all // syntactic elements, and recursively calling those, each function // advancing the input stream and returning an AST node. Precedence // of constructs (for example, the fact that `!x[1]` means `!(x[1])` // instead of `(!x)[1]` is handled by the fact that the parser // function that parses unary prefix operators is called first, and // in turn calls the function that parses `[]` subscripts — that // way, it'll receive the node for `x[1]` already parsed, and wraps // *that* in the unary operator node. // // Acorn uses an [operator precedence parser][opp] to handle binary // operator precedence, because it is much more compact than using // the technique outlined above, which uses different, nesting // functions to specify precedence, for all of the ten binary // precedence levels that JavaScript defines. // // [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser // ### Parser utilities // Continue to the next token. function next() { lastStart = tokStart; lastEnd = tokEnd; lastEndLoc = tokEndLoc; readToken(); } // Enter strict mode. Re-reads the next token to please pedantic // tests ("use strict"; 010; -- should fail). function setStrict(strct) { strict = strct; tokPos = lastEnd; skipSpace(); readToken(); } // Start an AST node, attaching a start offset and optionally a // `commentsBefore` property to it. function startNode() { var node = {type: null, start: tokStart, end: null}; if (options.trackComments && tokCommentsBefore) { node.commentsBefore = tokCommentsBefore; tokCommentsBefore = null; } if (options.locations) node.loc = {start: tokStartLoc, end: null, source: sourceFile}; if (options.ranges) node.range = [tokStart, 0]; return node; } // Start a node whose start offset/comments information should be // based on the start of another node. For example, a binary // operator node is only started after its left-hand side has // already been parsed. function startNodeFrom(other) { var node = {type: null, start: other.start}; if (other.commentsBefore) { node.commentsBefore = other.commentsBefore; other.commentsBefore = null; } if (options.locations) node.loc = {start: other.loc.start, end: null, source: other.loc.source}; if (options.ranges) node.range = [other.range[0], 0]; return node; } // Finish an AST node, adding `type`, `end`, and `commentsAfter` // properties. // // We keep track of the last node that we finished, in order // 'bubble' `commentsAfter` properties up to the biggest node. I.e. // in '`1 + 1 // foo', the comment should be attached to the binary // operator node, not the second literal node. var lastFinishedNode; function finishNode(node, type) { node.type = type; node.end = lastEnd; if (options.trackComments) { if (tokCommentsAfter) { node.commentsAfter = tokCommentsAfter; tokCommentsAfter = null; } else if (lastFinishedNode && lastFinishedNode.end === lastEnd && lastFinishedNode.commentsAfter) { node.commentsAfter = lastFinishedNode.commentsAfter; lastFinishedNode.commentsAfter = null; } lastFinishedNode = node; } if (options.locations) node.loc.end = lastEndLoc; if (options.ranges) node.range[1] = lastEnd; return node; } // Test whether a statement node is the string literal `"use strict"`. function isUseStrict(stmt) { return options.ecmaVersion >= 5 && stmt.type === "ExpressionStatement" && stmt.expression.type === "Literal" && stmt.expression.value === "use strict"; } // Predicate that tests whether the next token is of the given // type, and if yes, consumes it as a side effect. function eat(type) { if (tokType === type) { next(); return true; } } // Test whether a semicolon can be inserted at the current position. function canInsertSemicolon() { return !options.strictSemicolons && (tokType === _eof || tokType === _braceR || newline.test(input.slice(lastEnd, tokStart))); } // Consume a semicolon, or, failing that, see if we are allowed to // pretend that there is a semicolon at this position. function semicolon() { if (!eat(_semi) && !canInsertSemicolon()) unexpected(); } // Expect a token of a given type. If found, consume it, otherwise, // raise an unexpected token error. function expect(type) { if (tokType === type) next(); else unexpected(); } // Raise an unexpected token error. function unexpected() { raise(tokStart, "Unexpected token"); } // Verify that a node is an lval — something that can be assigned // to. function checkLVal(expr) { if (expr.type !== "Identifier" && expr.type !== "MemberExpression") raise(expr.start, "Assigning to rvalue"); if (strict && expr.type === "Identifier" && isStrictBadIdWord(expr.name)) raise(expr.start, "Assigning to " + expr.name + " in strict mode"); } // ### Statement parsing // Parse a program. Initializes the parser, reads any number of // statements, and wraps them in a Program node. Optionally takes a // `program` argument. If present, the statements will be appended // to its body instead of creating a new node. function parseTopLevel(program) { initTokenState(); lastStart = lastEnd = tokPos; if (options.locations) lastEndLoc = curLineLoc(); inFunction = strict = null; labels = []; readToken(); var node = program || startNode(), first = true; if (!program) node.body = []; while (tokType !== _eof) { var stmt = parseStatement(); node.body.push(stmt); if (first && isUseStrict(stmt)) setStrict(true); first = false; } return finishNode(node, "Program"); }; var loopLabel = {kind: "loop"}, switchLabel = {kind: "switch"}; // Parse a single statement. // // If expecting a statement and finding a slash operator, parse a // regular expression literal. This is to handle cases like // `if (foo) /blah/.exec(foo);`, where looking at the previous token // does not help. function parseStatement() { if (tokType === _slash) readToken(true); var starttype = tokType, node = startNode(); // Most types of statements are recognized by the keyword they // start with. Many are trivial to parse, some require a bit of // complexity. switch (starttype) { case _break: case _continue: next(); var isBreak = starttype === _break; if (eat(_semi) || canInsertSemicolon()) node.label = null; else if (tokType !== _name) unexpected(); else { node.label = parseIdent(); semicolon(); } // Verify that there is an actual destination to break or // continue to. for (var i = 0; i < labels.length; ++i) { var lab = labels[i]; if (node.label == null || lab.name === node.label.name) { if (lab.kind != null && (isBreak || lab.kind === "loop")) break; if (node.label && isBreak) break; } } if (i === labels.length) raise(node.start, "Unsyntactic " + starttype.keyword); return finishNode(node, isBreak ? "BreakStatement" : "ContinueStatement"); case _debugger: next(); return finishNode(node, "DebuggerStatement"); case _do: next(); labels.push(loopLabel); node.body = parseStatement(); labels.pop(); expect(_while); node.test = parseParenExpression(); semicolon(); return finishNode(node, "DoWhileStatement"); // Disambiguating between a `for` and a `for`/`in` loop is // non-trivial. Basically, we have to parse the init `var` // statement or expression, disallowing the `in` operator (see // the second parameter to `parseExpression`), and then check // whether the next token is `in`. When there is no init part // (semicolon immediately after the opening parenthesis), it is // a regular `for` loop. case _for: next(); labels.push(loopLabel); expect(_parenL); if (tokType === _semi) return parseFor(node, null); if (tokType === _var) { var init = startNode(); next(); parseVar(init, true); if (init.declarations.length === 1 && eat(_in)) return parseForIn(node, init); return parseFor(node, init); } var init = parseExpression(false, true); if (eat(_in)) {checkLVal(init); return parseForIn(node, init);} return parseFor(node, init); case _function: next(); return parseFunction(node, true); case _if: next(); node.test = parseParenExpression(); node.consequent = parseStatement(); node.alternate = eat(_else) ? parseStatement() : null; return finishNode(node, "IfStatement"); case _return: if (!inFunction) raise(tokStart, "'return' outside of function"); next(); // In `return` (and `break`/`continue`), the keywords with // optional arguments, we eagerly look for a semicolon or the // possibility to insert one. if (eat(_semi) || canInsertSemicolon()) node.argument = null; else { node.argument = parseExpression(); semicolon(); } return finishNode(node, "ReturnStatement"); case _switch: next(); node.discriminant = parseParenExpression(); node.cases = []; expect(_braceL); labels.push(switchLabel); // Statements under must be grouped (by label) in SwitchCase // nodes. `cur` is used to keep the node that we are currently // adding statements to. for (var cur, sawDefault; tokType != _braceR;) { if (tokType === _case || tokType === _default) { var isCase = tokType === _case; if (cur) finishNode(cur, "SwitchCase"); node.cases.push(cur = startNode()); cur.consequent = []; next(); if (isCase) cur.test = parseExpression(); else { if (sawDefault) raise(lastStart, "Multiple default clauses"); sawDefault = true; cur.test = null; } expect(_colon); } else { if (!cur) unexpected(); cur.consequent.push(parseStatement()); } } if (cur) finishNode(cur, "SwitchCase"); next(); // Closing brace labels.pop(); return finishNode(node, "SwitchStatement"); case _throw: next(); if (newline.test(input.slice(lastEnd, tokStart))) raise(lastEnd, "Illegal newline after throw"); node.argument = parseExpression(); return finishNode(node, "ThrowStatement"); case _try: next(); node.block = parseBlock(); node.handlers = []; while (tokType === _catch) { var clause = startNode(); next(); expect(_parenL); clause.param = parseIdent(); if (strict && isStrictBadIdWord(clause.param.name)) raise(clause.param.start, "Binding " + clause.param.name + " in strict mode"); expect(_parenR); clause.guard = null; clause.body = parseBlock(); node.handlers.push(finishNode(clause, "CatchClause")); } node.finalizer = eat(_finally) ? parseBlock() : null; if (!node.handlers.length && !node.finalizer) raise(node.start, "Missing catch or finally clause"); return finishNode(node, "TryStatement"); case _var: next(); node = parseVar(node); semicolon(); return node; case _while: next(); node.test = parseParenExpression(); labels.push(loopLabel); node.body = parseStatement(); labels.pop(); return finishNode(node, "WhileStatement"); case _with: if (strict) raise(tokStart, "'with' in strict mode"); next(); node.object = parseParenExpression(); node.body = parseStatement(); return finishNode(node, "WithStatement"); case _braceL: return parseBlock(); case _semi: next(); return finishNode(node, "EmptyStatement"); // If the statement does not start with a statement keyword or a // brace, it's an ExpressionStatement or LabeledStatement. We // simply start parsing an expression, and afterwards, if the // next token is a colon and the expression was a simple // Identifier node, we switch to interpreting it as a label. default: var maybeName = tokVal, expr = parseExpression(); if (starttype === _name && expr.type === "Identifier" && eat(_colon)) { for (var i = 0; i < labels.length; ++i) if (labels[i].name === maybeName) raise(expr.start, "Label '" + maybeName + "' is already declared"); var kind = tokType.isLoop ? "loop" : tokType === _switch ? "switch" : null; labels.push({name: maybeName, kind: kind}); node.body = parseStatement(); node.label = expr; return finishNode(node, "LabeledStatement"); } else { node.expression = expr; semicolon(); return finishNode(node, "ExpressionStatement"); } } } // Used for constructs like `switch` and `if` that insist on // parentheses around their expression. function parseParenExpression() { expect(_parenL); var val = parseExpression(); expect(_parenR); return val; } // Parse a semicolon-enclosed block of statements, handling `"use // strict"` declarations when `allowStrict` is true (used for // function bodies). function parseBlock(allowStrict) { var node = startNode(), first = true, strict = false, oldStrict; node.body = []; expect(_braceL); while (!eat(_braceR)) { var stmt = parseStatement(); node.body.push(stmt); if (first && isUseStrict(stmt)) { oldStrict = strict; setStrict(strict = true); } first = false } if (strict && !oldStrict) setStrict(false); return finishNode(node, "BlockStatement"); } // Parse a regular `for` loop. The disambiguation code in // `parseStatement` will already have parsed the init statement or // expression. function parseFor(node, init) { node.init = init; expect(_semi); node.test = tokType === _semi ? null : parseExpression(); expect(_semi); node.update = tokType === _parenR ? null : parseExpression(); expect(_parenR); node.body = parseStatement(); labels.pop(); return finishNode(node, "ForStatement"); } // Parse a `for`/`in` loop. function parseForIn(node, init) { node.left = init; node.right = parseExpression(); expect(_parenR); node.body = parseStatement(); labels.pop(); return finishNode(node, "ForInStatement"); } // Parse a list of variable declarations. function parseVar(node, noIn) { node.declarations = []; node.kind = "var"; for (;;) { var decl = startNode(); decl.id = parseIdent(); if (strict && isStrictBadIdWord(decl.id.name)) raise(decl.id.start, "Binding " + decl.id.name + " in strict mode"); decl.init = eat(_eq) ? parseExpression(true, noIn) : null; node.declarations.push(finishNode(decl, "VariableDeclarator")); if (!eat(_comma)) break; } return finishNode(node, "VariableDeclaration"); } // ### Expression parsing // These nest, from the most general expression type at the top to // 'atomic', nondivisible expression types at the bottom. Most of // the functions will simply let the function(s) below them parse, // and, *if* the syntactic construct they handle is present, wrap // the AST node that the inner parser gave them in another node. // Parse a full expression. The arguments are used to forbid comma // sequences (in argument lists, array literals, or object literals) // or the `in` operator (in for loops initalization expressions). function parseExpression(noComma, noIn) { var expr = parseMaybeAssign(noIn); if (!noComma && tokType === _comma) { var node = startNodeFrom(expr); node.expressions = [expr]; while (eat(_comma)) node.expressions.push(parseMaybeAssign(noIn)); return finishNode(node, "SequenceExpression"); } return expr; } // Parse an assignment expression. This includes applications of // operators like `+=`. function parseMaybeAssign(noIn) { var left = parseMaybeConditional(noIn); if (tokType.isAssign) { var node = startNodeFrom(left); node.operator = tokVal; node.left = left; next(); node.right = parseMaybeAssign(noIn); checkLVal(left); return finishNode(node, "AssignmentExpression"); } return left; } // Parse a ternary conditional (`?:`) operator. function parseMaybeConditional(noIn) { var expr = parseExprOps(noIn); if (eat(_question)) { var node = startNodeFrom(expr); node.test = expr; node.consequent = parseExpression(true); expect(_colon); node.alternate = parseExpression(true, noIn); return finishNode(node, "ConditionalExpression"); } return expr; } // Start the precedence parser. function parseExprOps(noIn) { return parseExprOp(parseMaybeUnary(noIn), -1, noIn); } // Parse binary operators with the operator precedence parsing // algorithm. `left` is the left-hand side of the operator. // `minPrec` provides context that allows the function to stop and // defer further parser to one of its callers when it encounters an // operator that has a lower precedence than the set it is parsing. function parseExprOp(left, minPrec, noIn) { var prec = tokType.binop; if (prec != null && (!noIn || tokType !== _in)) { if (prec > minPrec) { var node = startNodeFrom(left); node.left = left; node.operator = tokVal; next(); node.right = parseExprOp(parseMaybeUnary(noIn), prec, noIn); var node = finishNode(node, /&&|\|\|/.test(node.operator) ? "LogicalExpression" : "BinaryExpression"); return parseExprOp(node, minPrec, noIn); } } return left; } // Parse unary operators, both prefix and postfix. function parseMaybeUnary(noIn) { if (tokType.prefix) { var node = startNode(), update = tokType.isUpdate; node.operator = tokVal; node.prefix = true; next(); node.argument = parseMaybeUnary(noIn); if (update) checkLVal(node.argument); else if (strict && node.operator === "delete" && node.argument.type === "Identifier") raise(node.start, "Deleting local variable in strict mode"); return finishNode(node, update ? "UpdateExpression" : "UnaryExpression"); } var expr = parseExprSubscripts(); while (tokType.postfix && !canInsertSemicolon()) { var node = startNodeFrom(expr); node.operator = tokVal; node.prefix = false; node.argument = expr; checkLVal(expr); next(); expr = finishNode(node, "UpdateExpression"); } return expr; } // Parse call, dot, and `[]`-subscript expressions. function parseExprSubscripts() { return parseSubscripts(parseExprAtom()); } function parseSubscripts(base, noCalls) { if (eat(_dot)) { var node = startNodeFrom(base); node.object = base; node.property = parseIdent(true); node.computed = false; return parseSubscripts(finishNode(node, "MemberExpression"), noCalls); } else if (eat(_bracketL)) { var node = startNodeFrom(base); node.object = base; node.property = parseExpression(); node.computed = true; expect(_bracketR); return parseSubscripts(finishNode(node, "MemberExpression"), noCalls); } else if (!noCalls && eat(_parenL)) { var node = startNodeFrom(base); node.callee = base; node.arguments = parseExprList(_parenR, false); return parseSubscripts(finishNode(node, "CallExpression"), noCalls); } else return base; } // Parse an atomic expression — either a single token that is an // expression, an expression started by a keyword like `function` or // `new`, or an expression wrapped in punctuation like `()`, `[]`, // or `{}`. function parseExprAtom() { switch (tokType) { case _this: var node = startNode(); next(); return finishNode(node, "ThisExpression"); case _name: return parseIdent(); case _num: case _string: case _regexp: var node = startNode(); node.value = tokVal; node.raw = input.slice(tokStart, tokEnd); next(); return finishNode(node, "Literal"); case _null: case _true: case _false: var node = startNode(); node.value = tokType.atomValue; next(); return finishNode(node, "Literal"); case _parenL: next(); var val = parseExpression(); expect(_parenR); return val; case _bracketL: var node = startNode(); next(); node.elements = parseExprList(_bracketR, true, true); return finishNode(node, "ArrayExpression"); case _braceL: return parseObj(); case _function: var node = startNode(); next(); return parseFunction(node, false); case _new: return parseNew(); default: unexpected(); } } // New's precedence is slightly tricky. It must allow its argument // to be a `[]` or dot subscript expression, but not a call — at // least, not without wrapping it in parentheses. Thus, it uses the function parseNew() { var node = startNode(); next(); node.callee = parseSubscripts(parseExprAtom(false), true); if (eat(_parenL)) node.arguments = parseExprList(_parenR, false); else node.arguments = []; return finishNode(node, "NewExpression"); } // Parse an object literal. function parseObj() { var node = startNode(), first = true, sawGetSet = false; node.properties = []; next(); while (!eat(_braceR)) { if (!first) { expect(_comma); if (options.allowTrailingCommas && eat(_braceR)) break; } else first = false; var prop = {key: parsePropertyName()}, isGetSet = false, kind; if (eat(_colon)) { prop.value = parseExpression(true); kind = prop.kind = "init"; } else if (options.ecmaVersion >= 5 && prop.key.type === "Identifier" && (prop.key.name === "get" || prop.key.name === "set")) { isGetSet = sawGetSet = true; kind = prop.kind = prop.key.name; prop.key = parsePropertyName(); if (!tokType === _parenL) unexpected(); prop.value = parseFunction(startNode(), false); } else unexpected(); // getters and setters are not allowed to clash — either with // each other or with an init property — and in strict mode, // init properties are also not allowed to be repeated. if (prop.key.type === "Identifier" && (strict || sawGetSet)) { for (var i = 0; i < node.properties.length; ++i) { var other = node.properties[i]; if (other.key.name === prop.key.name) { var conflict = kind == other.kind || isGetSet && other.kind === "init" || kind === "init" && (other.kind === "get" || other.kind === "set"); if (conflict && !strict && kind === "init" && other.kind === "init") conflict = false; if (conflict) raise(prop.key.start, "Redefinition of property"); } } } node.properties.push(prop); } return finishNode(node, "ObjectExpression"); } function parsePropertyName() { if (tokType === _num || tokType === _string) return parseExprAtom(); return parseIdent(true); } // Parse a function declaration or literal (depending on the // `isStatement` parameter). function parseFunction(node, isStatement) { if (tokType === _name) node.id = parseIdent(); else if (isStatement) unexpected(); else node.id = null; node.params = []; var first = true; expect(_parenL); while (!eat(_parenR)) { if (!first) expect(_comma); else first = false; node.params.push(parseIdent()); } // Start a new scope with regard to labels and the `inFunction` // flag (restore them to their old value afterwards). var oldInFunc = inFunction, oldLabels = labels; inFunction = true; labels = []; node.body = parseBlock(true); inFunction = oldInFunc; labels = oldLabels; // If this is a strict mode function, verify that argument names // are not repeated, and it does not try to bind the words `eval` // or `arguments`. if (strict || node.body.body.length && isUseStrict(node.body.body[0])) { for (var i = node.id ? -1 : 0; i < node.params.length; ++i) { var id = i < 0 ? node.id : node.params[i]; if (isStrictReservedWord(id.name) || isStrictBadIdWord(id.name)) raise(id.start, "Defining '" + id.name + "' in strict mode"); if (i >= 0) for (var j = 0; j < i; ++j) if (id.name === node.params[j].name) raise(id.start, "Argument name clash in strict mode"); } } return finishNode(node, isStatement ? "FunctionDeclaration" : "FunctionExpression"); } // Parses a comma-separated list of expressions, and returns them as // an array. `close` is the token type that ends the list, and // `allowEmpty` can be turned on to allow subsequent commas with // nothing in between them to be parsed as `null` (which is needed // for array literals). function parseExprList(close, allowTrailingComma, allowEmpty) { var elts = [], first = true; while (!eat(close)) { if (!first) { expect(_comma); if (allowTrailingComma && options.allowTrailingCommas && eat(close)) break; } else first = false; if (allowEmpty && tokType === _comma) elts.push(null); else elts.push(parseExpression(true)); } return elts; } // Parse the next token as an identifier. If `liberal` is true (used // when parsing properties), it will also convert keywords into // identifiers. function parseIdent(liberal) { var node = startNode(); node.name = tokType === _name ? tokVal : (liberal && !options.forbidReserved && tokType.keyword) || unexpected(); next(); return finishNode(node, "Identifier"); } })(typeof exports === "undefined" ? (window.acorn = {}) : exports);