/* * Paper.js - The Swiss Army Knife of Vector Graphics Scripting. * http://paperjs.org/ * * Copyright (c) 2011 - 2013, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * Distributed under the MIT license. See LICENSE file for details. * * All rights reserved. */ // Based on goog.graphics.AffineTransform, as part of the Closure Library. // Copyright 2008 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); /** * @name Matrix * * @class An affine transform performs a linear mapping from 2D coordinates * to other 2D coordinates that preserves the "straightness" and * "parallelness" of lines. * * Such a coordinate transformation can be represented by a 3 row by 3 * column matrix with an implied last row of [ 0 0 1 ]. This matrix * transforms source coordinates (x,y) into destination coordinates (x',y') * by considering them to be a column vector and multiplying the coordinate * vector by the matrix according to the following process: *
* [ x ] [ a b tx ] [ x ] [ a * x + b * y + tx ] * [ y ] = [ c d ty ] [ y ] = [ c * x + d * y + ty ] * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ] ** * This class is optimized for speed and minimizes calculations based on its * knowledge of the underlying matrix (as opposed to say simply performing * matrix multiplication). */ var Matrix = Base.extend(/** @lends Matrix# */{ _class: 'Matrix', /** * Creates a 2D affine transform. * * @param {Number} a the scaleX coordinate of the transform * @param {Number} c the shearY coordinate of the transform * @param {Number} b the shearX coordinate of the transform * @param {Number} d the scaleY coordinate of the transform * @param {Number} tx the translateX coordinate of the transform * @param {Number} ty the translateY coordinate of the transform */ initialize: function Matrix(arg) { var count = arguments.length, ok = true; if (count === 6) { this.set.apply(this, arguments); } else if (count === 1) { if (arg instanceof Matrix) { this.set(arg._a, arg._c, arg._b, arg._d, arg._tx, arg._ty); } else if (Array.isArray(arg)) { this.set.apply(this, arg); } else { ok = false; } } else if (count === 0) { this.reset(); } else { ok = false; } if (!ok) throw new Error('Unsupported matrix parameters'); }, /** * Sets this transform to the matrix specified by the 6 values. * * @param {Number} a the scaleX coordinate of the transform * @param {Number} c the shearY coordinate of the transform * @param {Number} b the shearX coordinate of the transform * @param {Number} d the scaleY coordinate of the transform * @param {Number} tx the translateX coordinate of the transform * @param {Number} ty the translateY coordinate of the transform * @return {Matrix} this affine transform */ set: function(a, c, b, d, tx, ty, _dontNotify) { this._a = a; this._c = c; this._b = b; this._d = d; this._tx = tx; this._ty = ty; if (!_dontNotify) this._changed(); return this; }, _serialize: function(options) { return Base.serialize(this.getValues(), options); }, _changed: function() { if (this._owner) this._owner._changed(/*#=*/ Change.GEOMETRY); }, /** * @return {Matrix} a copy of this transform */ clone: function() { return new Matrix(this._a, this._c, this._b, this._d, this._tx, this._ty); }, /** * Checks whether the two matrices describe the same transformation. * * @param {Matrix} matrix the matrix to compare this matrix to * @return {Boolean} {@true if the matrices are equal} */ equals: function(mx) { return mx === this || mx && this._a === mx._a && this._b === mx._b && this._c === mx._c && this._d === mx._d && this._tx === mx._tx && this._ty === mx._ty || false; }, /** * @return {String} a string representation of this transform */ toString: function() { var f = Formatter.instance; return '[[' + [f.number(this._a), f.number(this._b), f.number(this._tx)].join(', ') + '], [' + [f.number(this._c), f.number(this._d), f.number(this._ty)].join(', ') + ']]'; }, /** * "Resets" the matrix by setting its values to the ones of the identity * matrix that results in no transformation. */ reset: function() { this._a = this._d = 1; this._c = this._b = this._tx = this._ty = 0; this._changed(); return this; }, /** * Concatenates this transform with a scaling transformation. * * @name Matrix#scale * @function * @param {Number} scale the scaling factor * @param {Point} [center] the center for the scaling transformation * @return {Matrix} this affine transform */ /** * Concatenates this transform with a scaling transformation. * * @name Matrix#scale * @function * @param {Number} hor the horizontal scaling factor * @param {Number} ver the vertical scaling factor * @param {Point} [center] the center for the scaling transformation * @return {Matrix} this affine transform */ scale: function(/* scale, center */) { // Do not modify scale, center, since that would arguments of which // we're reading from! var scale = Point.read(arguments), center = Point.read(arguments, 0, 0, { readNull: true }); if (center) this.translate(center); this._a *= scale.x; this._c *= scale.x; this._b *= scale.y; this._d *= scale.y; if (center) this.translate(center.negate()); this._changed(); return this; }, /** * Concatenates this transform with a translate transformation. * * @name Matrix#translate * @function * @param {Point} point the vector to translate by * @return {Matrix} this affine transform */ /** * Concatenates this transform with a translate transformation. * * @name Matrix#translate * @function * @param {Number} dx the distance to translate in the x direction * @param {Number} dy the distance to translate in the y direction * @return {Matrix} this affine transform */ translate: function(point) { point = Point.read(arguments); var x = point.x, y = point.y; this._tx += x * this._a + y * this._b; this._ty += x * this._c + y * this._d; this._changed(); return this; }, /** * Concatenates this transform with a rotation transformation around an * anchor point. * * @name Matrix#rotate * @function * @param {Number} angle the angle of rotation measured in degrees * @param {Point} center the anchor point to rotate around * @return {Matrix} this affine transform */ /** * Concatenates this transform with a rotation transformation around an * anchor point. * * @name Matrix#rotate * @function * @param {Number} angle the angle of rotation measured in degrees * @param {Number} x the x coordinate of the anchor point * @param {Number} y the y coordinate of the anchor point * @return {Matrix} this affine transform */ rotate: function(angle, center) { center = Point.read(arguments, 1); angle = angle * Math.PI / 180; // Concatenate rotation matrix into this one var x = center.x, y = center.y, cos = Math.cos(angle), sin = Math.sin(angle), tx = x - x * cos + y * sin, ty = y - x * sin - y * cos, a = this._a, b = this._b, c = this._c, d = this._d; this._a = cos * a + sin * b; this._b = -sin * a + cos * b; this._c = cos * c + sin * d; this._d = -sin * c + cos * d; this._tx += tx * a + ty * b; this._ty += tx * c + ty * d; this._changed(); return this; }, /** * Concatenates this transform with a shear transformation. * * @name Matrix#shear * @function * @param {Point} point the shear factor in x and y direction * @param {Point} [center] the center for the shear transformation * @return {Matrix} this affine transform */ /** * Concatenates this transform with a shear transformation. * * @name Matrix#shear * @function * @param {Number} hor the horizontal shear factor * @param {Number} ver the vertical shear factor * @param {Point} [center] the center for the shear transformation * @return {Matrix} this affine transform */ shear: function(/* point, center */) { // Do not modify point, center, since that would arguments of which // we're reading from! var point = Point.read(arguments), center = Point.read(arguments, 0, 0, { readNull: true }); if (center) this.translate(center); var a = this._a, c = this._c; this._a += point.y * this._b; this._c += point.y * this._d; this._b += point.x * a; this._d += point.x * c; if (center) this.translate(center.negate()); this._changed(); return this; }, /** * Concatenates an affine transform to this transform. * * @param {Matrix} mx the transform to concatenate * @return {Matrix} this affine transform */ concatenate: function(mx) { var a = this._a, b = this._b, c = this._c, d = this._d; this._a = mx._a * a + mx._c * b; this._b = mx._b * a + mx._d * b; this._c = mx._a * c + mx._c * d; this._d = mx._b * c + mx._d * d; this._tx += mx._tx * a + mx._ty * b; this._ty += mx._tx * c + mx._ty * d; this._changed(); return this; }, /** * Pre-concatenates an affine transform to this transform. * * @param {Matrix} mx the transform to preconcatenate * @return {Matrix} this affine transform */ preConcatenate: function(mx) { var a = this._a, b = this._b, c = this._c, d = this._d, tx = this._tx, ty = this._ty; this._a = mx._a * a + mx._b * c; this._b = mx._a * b + mx._b * d; this._c = mx._c * a + mx._d * c; this._d = mx._c * b + mx._d * d; this._tx = mx._a * tx + mx._b * ty + mx._tx; this._ty = mx._c * tx + mx._d * ty + mx._ty; this._changed(); return this; }, /** * @return {Boolean} whether this transform is the identity transform */ isIdentity: function() { return this._a === 1 && this._c === 0 && this._b === 0 && this._d === 1 && this._tx === 0 && this._ty === 0; }, /** * Returns whether the transform is invertible. A transform is not * invertible if the determinant is 0 or any value is non-finite or NaN. * * @return {Boolean} whether the transform is invertible */ isInvertible: function() { return !!this._getDeterminant(); }, /** * Checks whether the matrix is singular or not. Singular matrices cannot be * inverted. * * @return {Boolean} whether the matrix is singular */ isSingular: function() { return !this._getDeterminant(); }, /** * Transforms a point and returns the result. * * @name Matrix#transform * @function * @param {Point} point the point to be transformed * @return {Point} the transformed point */ /** * Transforms an array of coordinates by this matrix and stores the results * into the destination array, which is also returned. * * @name Matrix#transform * @function * @param {Number[]} src the array containing the source points * as x, y value pairs * @param {Number} srcOffset the offset to the first point to be transformed * @param {Number[]} dst the array into which to store the transformed * point pairs * @param {Number} dstOffset the offset of the location of the first * transformed point in the destination array * @param {Number} count the number of points to tranform * @return {Number[]} the dst array, containing the transformed coordinates. */ transform: function(/* point | */ src, srcOffset, dst, dstOffset, count) { return arguments.length < 5 // TODO: Check for rectangle and use _tranformBounds? ? this._transformPoint(Point.read(arguments)) : this._transformCoordinates(src, srcOffset, dst, dstOffset, count); }, /** * A faster version of transform that only takes one point and does not * attempt to convert it. */ _transformPoint: function(point, dest, _dontNotify) { var x = point.x, y = point.y; if (!dest) dest = new Point(); return dest.set( x * this._a + y * this._b + this._tx, x * this._c + y * this._d + this._ty, _dontNotify ); }, _transformCoordinates: function(src, srcOffset, dst, dstOffset, count) { var i = srcOffset, j = dstOffset, max = i + 2 * count; while (i < max) { var x = src[i++], y = src[i++]; dst[j++] = x * this._a + y * this._b + this._tx; dst[j++] = x * this._c + y * this._d + this._ty; } return dst; }, _transformCorners: function(rect) { var x1 = rect.x, y1 = rect.y, x2 = x1 + rect.width, y2 = y1 + rect.height, coords = [ x1, y1, x2, y1, x2, y2, x1, y2 ]; return this._transformCoordinates(coords, 0, coords, 0, 4); }, /** * Returns the 'transformed' bounds rectangle by transforming each corner * point and finding the new bounding box to these points. This is not * really the transformed reactangle! */ _transformBounds: function(bounds, dest, _dontNotify) { var coords = this._transformCorners(bounds), min = coords.slice(0, 2), max = coords.slice(); for (var i = 2; i < 8; i++) { var val = coords[i], j = i & 1; if (val < min[j]) min[j] = val; else if (val > max[j]) max[j] = val; } if (!dest) dest = new Rectangle(); return dest.set(min[0], min[1], max[0] - min[0], max[1] - min[1], _dontNotify); }, /** * Inverse transforms a point and returns the result. * * @param {Point} point the point to be transformed */ inverseTransform: function(/* point */) { return this._inverseTransform(Point.read(arguments)); }, /** * Returns the determinant of this transform, but only if the matrix is * reversible, null otherwise. */ _getDeterminant: function() { var det = this._a * this._d - this._b * this._c; return isFinite(det) && !Numerical.isZero(det) && isFinite(this._tx) && isFinite(this._ty) ? det : null; }, _inverseTransform: function(point, dest, _dontNotify) { var det = this._getDeterminant(); if (!det) return null; var x = point.x - this._tx, y = point.y - this._ty; if (!dest) dest = new Point(); return dest.set( (x * this._d - y * this._b) / det, (y * this._a - x * this._c) / det, _dontNotify ); }, /** * Attempts to decompose the affine transformation described by this matrix * into {@code translation}, {@code scaling}, {@code rotation} and * {@code shearing}, and returns an object with these properties if it * succeeded, {@code null} otherwise. * * @return {Object} the decomposed matrix, or {@code null} if decomposition * is not possible. */ decompose: function() { // http://dev.w3.org/csswg/css3-2d-transforms/#matrix-decomposition // http://stackoverflow.com/questions/4361242/ // https://github.com/wisec/DOMinator/blob/master/layout/style/nsStyleAnimation.cpp#L946 var a = this._a, b = this._b, c = this._c, d = this._d; if (Numerical.isZero(a * d - b * c)) return null; var scaleX = Math.sqrt(a * a + b * b); a /= scaleX; b /= scaleX; var shear = a * c + b * d; c -= a * shear; d -= b * shear; var scaleY = Math.sqrt(c * c + d * d); c /= scaleY; d /= scaleY; shear /= scaleY; // a * d - b * c should now be 1 or -1 if (a * d < b * c) { a = -a; b = -b; // We don't need c & d anymore, but if we did, we'd have to do this: // c = -c; // d = -d; shear = -shear; scaleX = -scaleX; } return { translation: this.getTranslation(), scaling: new Point(scaleX, scaleY), rotation: -Math.atan2(b, a) * 180 / Math.PI, shearing: shear }; }, /** * The scaling factor in the x-direction ({@code a}). * * @name Matrix#scaleX * @type Number */ /** * The scaling factor in the y-direction ({@code d}). * * @name Matrix#scaleY * @type Number */ /** * The shear factor in the x-direction ({@code b}). * * @name Matrix#shearX * @type Number */ /** * The shear factor in the y-direction ({@code c}). * * @name Matrix#shearY * @type Number */ /** * The translation in the x-direction ({@code tx}). * * @name Matrix#translateX * @type Number */ /** * The translation in the y-direction ({@code ty}). * * @name Matrix#translateY * @type Number */ /** * The transform values as an array, in the same sequence as they are passed * to {@link #initialize(a, c, b, d, tx, ty)}. * * @type Number[] * @bean */ getValues: function() { return [ this._a, this._c, this._b, this._d, this._tx, this._ty ]; }, /** * The translation values of the matrix. * * @type Point * @bean */ getTranslation: function() { // No decomposition is required to extract translation, so treat this return new Point(this._tx, this._ty); }, setTranslation: function(/* point */) { var point = Point.read(arguments); this._tx = point.x; this._ty = point.y; this._changed(); }, /** * The scaling values of the matrix, if it can be decomposed. * * @type Point * @bean * @see Matrix#decompose() */ getScaling: function() { return (this.decompose() || {}).scaling; }, setScaling: function(/* scale */) { var scaling = this.getScaling(); if (scaling != null) { var scale = Point.read(arguments); (this._owner || this).scale( scale.x / scaling.x, scale.y / scaling.y); } }, /** * The rotation angle of the matrix, if it can be decomposed. * * @type Number * @bean * @see Matrix#decompose() */ getRotation: function() { return (this.decompose() || {}).rotation; }, setRotation: function(angle) { var rotation = this.getRotation(); if (rotation != null) (this._owner || this).rotate(angle - rotation); }, /** * Inverts the transformation of the matrix. If the matrix is not invertible * (in which case {@link #isSingular()} returns true), {@code null } is * returned. * * @return {Matrix} the inverted matrix, or {@code null }, if the matrix is * singular */ inverted: function() { var det = this._getDeterminant(); return det && new Matrix( this._d / det, -this._c / det, -this._b / det, this._a / det, (this._b * this._ty - this._d * this._tx) / det, (this._c * this._tx - this._a * this._ty) / det); }, shiftless: function() { return new Matrix(this._a, this._c, this._b, this._d, 0, 0); }, /** * Applies this matrix to the specified Canvas Context. * * @param {CanvasRenderingContext2D} ctx */ applyToContext: function(ctx) { ctx.transform(this._a, this._c, this._b, this._d, this._tx, this._ty); } }, new function() { return Base.each({ scaleX: '_a', scaleY: '_d', translateX: '_tx', translateY: '_ty', shearX: '_b', shearY: '_c' }, function(prop, name) { name = Base.capitalize(name); this['get' + name] = function() { return this[prop]; }; this['set' + name] = function(value) { this[prop] = value; this._changed(); }; }, {}); });