// Based on goog.graphics.AffineTransform, as part of the Closure Library. // Copyright 2008 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); var Matrix = Base.extend({ beans: true, /** * Creates a 2D affine transform. An affine transform performs a linear * mapping from 2D coordinates to other 2D coordinates that preserves the * "straightness" and "parallelness" of lines. * * Such a coordinate transformation can be represented by a 3 row by 3 * column matrix with an implied last row of [ 0 0 1 ]. This matrix * transforms source coordinates (x,y) into destination coordinates (x',y') * by considering them to be a column vector and multiplying the coordinate * vector by the matrix according to the following process: *
* [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ] * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ] * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ] ** * This class is optimized for speed and minimizes calculations based on its * knowledge of the underlying matrix (as opposed to say simply performing * matrix multiplication). * * @param {number} m00 The m00 coordinate of the transform. * @param {number} m10 The m10 coordinate of the transform. * @param {number} m01 The m01 coordinate of the transform. * @param {number} m11 The m11 coordinate of the transform. * @param {number} m02 The m02 coordinate of the transform. * @param {number} m12 The m12 coordinate of the transform. * @constructor */ initialize: function(m00, m10, m01, m11, m02, m12) { if (arguments.length == 6) { this.set(m00, m10, m01, m11, m02, m12); } else if (arguments == 1) { var mx = arguments[0]; // TODO: Check for array! this.set(mx._m00, mx._m10, mx._m01, mx._m11, mx._m02, mx._m12); } else if (arguments.length) { throw Error('Insufficient matrix parameters'); } else { this._m00 = this._m11 = 1; this._m10 = this._m01 = this._m02 = this._m12 = 0; } }, /** * @return {Matrix} A copy of this transform. */ clone: function() { return new Matrix(this._m00, this._m10, this._m01, this._m11, this._m02, this._m12); }, /** * Sets this transform to the matrix specified by the 6 values. * * @param {number} m00 The m00 coordinate of the transform. * @param {number} m10 The m10 coordinate of the transform. * @param {number} m01 The m01 coordinate of the transform. * @param {number} m11 The m11 coordinate of the transform. * @param {number} m02 The m02 coordinate of the transform. * @param {number} m12 The m12 coordinate of the transform. * @return {Matrix} This affine transform. */ set: function(m00, m10, m01, m11, m02, m12) { this._m00 = m00; this._m10 = m10; this._m01 = m01; this._m11 = m11; this._m02 = m02; this._m12 = m12; return this; }, /** * Concatentates this transform with a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @param {Point} center The optional center for the scaling transformation. * @return {Matrix} This affine transform. */ scale: function(sx, sy /* | scale */, center) { // TODO: Make single scale parameter work with center points! // Check arguments.length and typeof arguments[1], if object, assume // scale center = Point.read(arguments, 2); // TODO: Optimise calls to translate to not rely on point conversion // use private translate function instead. if (center) this.translate(center.x, center.y); this._m00 *= sx; this._m10 *= sx; this._m01 *= sy; this._m11 *= sy; if (center) this.translate(-center.x, -center.y); return this; }, /** * Concatentates this transform with a translate transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {Matrix} This affine transform. */ translate: function(point) { point = Point.read(arguments); if (point) { var x = point.x, y = point.y; this._m02 += x * this._m00 + y * this._m01; this._m12 += x * this._m10 + y * this._m11; } return this; }, /** * Concatentates this transform with a rotation transformation around an * anchor point. * * @param {number} angle The angle of rotation measured in degrees. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {Matrix} This affine transform. */ rotate: function(angle, center) { return this.concatenate( Matrix.getRotateInstance.apply(Matrix, arguments)); }, /** * Concatentates this transform with a shear transformation. * * @param {number} shx The x shear factor. * @param {number} shy The y shear factor. * @param {Point} center The optional center for the shear transformation. * @return {Matrix} This affine transform. */ shear: function(shx, shy, center) { center = Point.read(arguments, 2); // TODO: Optimise calls to translate to not rely on point conversion // use private translate function instead. if (center) this.translate(center.x, center.y); var m00 = this._m00; var m10 = this._m10; this._m00 += shy * this._m01; this._m10 += shy * this._m11; this._m01 += shx * m00; this._m11 += shx * m10; if (center) this.translate(-center.x, -center.y); return this; }, /** * @return {string} A string representation of this transform. */ toString: function() { return '[[' + [this._m00, this._m10, this._m01].join(', ') + '], [' + [this._m11, this._m02, this._m12].join(', ') + ']]'; }, /** * @return {number} The scaling factor in the x-direction (m00). */ getScaleX: function() { return this._m00; }, setScaleX: function(scaleX) { this._m00 = scaleX; }, /** * @return {number} The scaling factor in the y-direction (m11). */ getScaleY: function() { return this._m11; }, setScaleY: function(scaleY) { this._m11 = scaleY; }, /** * @return {number} The translation in the x-direction (m02). */ getTranslateX: function() { return this._m02; }, setTranslateX: function(translateX) { this._m02 = translateX; }, /** * @return {number} The translation in the y-direction (m12). */ getTranslateY: function() { return this._m12; }, setTranslateY: function(translateY) { this._m12 = translateY; }, /** * @return {number} The shear factor in the x-direction (m01). */ getShearX: function() { return this._m01; }, setShearX: function(shearX) { this._m01 = shearX; }, /** * @return {number} The shear factor in the y-direction (m10). */ getShearY: function() { return this._m10; }, setShearY: function(shearY) { this._m10 = shearY; }, /** * Concatenates an affine transform to this transform. * * @param {Matrix} mx The transform to concatenate. * @return {Matrix} This affine transform. */ concatenate: function(mx) { var m0 = this._m00; var m1 = this._m01; this._m00 = mx._m00 * m0 + mx._m10 * m1; this._m01 = mx._m01 * m0 + mx._m11 * m1; this._m02 += mx._m02 * m0 + mx._m12 * m1; m0 = this._m10; m1 = this._m11; this._m10 = mx._m00 * m0 + mx._m10 * m1; this._m11 = mx._m01 * m0 + mx._m11 * m1; this._m12 += mx._m02 * m0 + mx._m12 * m1; return this; }, /** * Pre-concatenates an affine transform to this transform. * * @param {Matrix} mx The transform to preconcatenate. * @return {Matrix} This affine transform. */ preConcatenate: function(mx) { var m0 = this._m00; var m1 = this._m10; this._m00 = mx._m00 * m0 + mx._m01 * m1; this._m10 = mx._m10 * m0 + mx._m11 * m1; m0 = this._m01; m1 = this._m11; this._m01 = mx._m00 * m0 + mx._m01 * m1; this._m11 = mx._m10 * m0 + mx._m11 * m1; m0 = this._m02; m1 = this._m12; this._m02 = mx._m00 * m0 + mx._m01 * m1 + mx._m02; this._m12 = mx._m10 * m0 + mx._m11 * m1 + mx._m12; return this; }, /** * Transforms a point or an array of coordinates by this matrix and returns * the result. If an array is transformed, the the result is stored into a * destination array. * * @param {Point} point The point to be transformed. * * @param {Array} src The array containing the source points * as x, y value pairs. * @param {number} srcOff The offset to the first point to be transformed. * @param {Array} dst The array into which to store the transformed * point pairs. * @param {number} dstOff The offset of the location of the first * transformed point in the destination array. * @param {number} numPts The number of points to tranform. */ transform: function(/* point | */ src, srcOff, dst, dstOff, numPts) { if (arguments.length == 5) { var i = srcOff; var j = dstOff; var srcEnd = srcOff + 2 * numPts; while (i < srcEnd) { var x = src[i++]; var y = src[i++]; dst[j++] = x * this._m00 + y * this._m01 + this._m02; dst[j++] = x * this._m10 + y * this._m11 + this._m12; } return dst; } else if (arguments.length > 0) { var point = Point.read(arguments); if (point) { var x = point.x, y = point.y; return new Point( x * this._m00 + y * this._m01 + this._m02, x * this._m10 + y * this._m11 + this._m12 ); } } return null; }, /** * @return {number} The determinant of this transform. */ getDeterminant: function() { return this._m00 * this._m11 - this._m01 * this._m10; }, /** * @return {boolean} Whether this transform is the identity transform. */ isIdentity: function() { return this._m00 == 1 && this._m10 == 0 && this._m01 == 0 && this._m11 == 1 && this._m02 == 0 && this._m12 == 0; }, /** * Returns whether the transform is invertible. A transform is not * invertible if the determinant is 0 or any value is non-finite or NaN. * * @return {boolean} Whether the transform is invertible. */ isInvertible: function() { var det = this.getDeterminant(); return isFinite(det) && det != 0 && isFinite(this._m02) && isFinite(this._m12); }, /** * Checks whether the matrix is singular or not. Singular matrices cannot be * inverted. * * @return {boolean} Whether the matrix is singular. */ isSingular: function() { return !this.isInvertible(); }, /** * @return {Matrix} An Matrix object representing the inverse * transformation. */ createInverse: function() { var det = this.getDeterminant(); if (isFinite(det) && det != 0 && isFinite(this._m02) && isFinite(this._m12)) { return new Matrix( this._m11 / det, -this._m10 / det, -this._m01 / det, this._m00 / det, (this._m01 * this._m12 - this._m11 * this._m02) / det, (this._m10 * this._m02 - this._m00 * this._m12) / det); } return null; }, /** * Sets this transform to a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {Matrix} This affine transform. */ setToScale: function(sx, sy) { return this.set(sx, 0, 0, sy, 0, 0); }, /** * Sets this transform to a translation transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {Matrix} This affine transform. */ setToTranslation: function(delta) { delta = Point.read(arguments); if (delta) { return this.set(1, 0, 0, 1, delta.x, delta.y); } return this; }, /** * Sets this transform to a shearing transformation. * * @param {number} shx The x-axis shear factor. * @param {number} shy The y-axis shear factor. * @return {Matrix} This affine transform. */ setToShear: function(shx, shy) { return this.set(1, shy, shx, 1, 0, 0); }, /** * Sets this transform to a rotation transformation. * * @param {number} angle The angle of rotation measured in degrees. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {Matrix} This affine transform. */ setToRotation: function(angle, center) { center = Point.read(arguments, 1); if (center) { angle = angle * Math.PI / 180.0; var x = center.x, y = center.y; var cos = Math.cos(angle); var sin = Math.sin(angle); return this.set(cos, sin, -sin, cos, x - x * cos + y * sin, y - x * sin - y * cos); } return this; }, statics: { /** * Creates a transform representing a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {Matrix} A transform representing a scaling * transformation. */ getScaleInstance: function(sx, sy) { var mx = new Matrix(); return mx.setToScale.apply(mx, arguments); }, /** * Creates a transform representing a translation transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {Matrix} A transform representing a translation * transformation. */ getTranslateInstance: function(delta) { var mx = new Matrix(); return mx.setToTranslation.apply(mx, arguments); }, /** * Creates a transform representing a shearing transformation. * * @param {number} shx The x-axis shear factor. * @param {number} shy The y-axis shear factor. * @return {Matrix} A transform representing a shearing transformation. */ getShearInstance: function(shx, shy, center) { var mx = new Matrix(); return mx.setToShear.apply(mx, arguments); }, /** * Creates a transform representing a rotation transformation. * * @param {number} angle The angle of rotation measured in degrees. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {Matrix} A transform representing a rotation transformation. */ getRotateInstance: function(angle, center) { var mx = new Matrix(); return mx.setToRotation.apply(mx, arguments); } } });