/* * Paper.js * * This file is part of Paper.js, a JavaScript Vector Graphics Library, * based on Scriptographer.org and designed to be largely API compatible. * http://paperjs.org/ * http://scriptographer.org/ * * Distributed under the MIT license. See LICENSE file for details. * * Copyright (c) 2011, Juerg Lehni & Jonathan Puckey * http://lehni.org/ & http://jonathanpuckey.com/ * * All rights reserved. */ // Based on goog.graphics.AffineTransform, as part of the Closure Library. // Copyright 2008 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); var Matrix = this.Matrix = Base.extend({ /** @lends Matrix# */ /** * Creates a 2D affine transform. * * @constructs Matrix * @param {Number} m00 The m00 coordinate of the transform. * @param {Number} m10 The m10 coordinate of the transform. * @param {Number} m01 The m01 coordinate of the transform. * @param {Number} m11 The m11 coordinate of the transform. * @param {Number} m02 The m02 coordinate of the transform. * @param {Number} m12 The m12 coordinate of the transform. * * @class An affine transform performs a linear mapping from 2D coordinates * to other 2D coordinates that preserves the "straightness" and * "parallelness" of lines. * * Such a coordinate transformation can be represented by a 3 row by 3 * column matrix with an implied last row of [ 0 0 1 ]. This matrix * transforms source coordinates (x,y) into destination coordinates (x',y') * by considering them to be a column vector and multiplying the coordinate * vector by the matrix according to the following process: *
* [ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ] * [ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ] * [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ] ** * This class is optimized for speed and minimizes calculations based on its * knowledge of the underlying matrix (as opposed to say simply performing * matrix multiplication). */ initialize: function(m00, m10, m01, m11, m02, m12) { var ok = true; if (arguments.length == 6) { this.set(m00, m10, m01, m11, m02, m12); } else if (arguments.length == 1) { if (m00 instanceof Matrix) { this.set(m00._m00, m00._m10, m00._m01, m00._m11, m00._m02, m00._m12); } else if (Array.isArray(m00)) { this.set.apply(this, m00); } else { ok = false; } } else if (arguments.length > 0) { ok = false; } else { this._m00 = this._m11 = 1; this._m10 = this._m01 = this._m02 = this._m12 = 0; } if (!ok) throw new Error('Unsupported matrix parameters'); }, /** * @return {Matrix} A copy of this transform. */ clone: function() { return Matrix.create(this._m00, this._m10, this._m01, this._m11, this._m02, this._m12); }, /** * Sets this transform to the matrix specified by the 6 values. * * @param {Number} m00 The m00 coordinate of the transform. * @param {Number} m10 The m10 coordinate of the transform. * @param {Number} m01 The m01 coordinate of the transform. * @param {Number} m11 The m11 coordinate of the transform. * @param {Number} m02 The m02 coordinate of the transform. * @param {Number} m12 The m12 coordinate of the transform. * @return {Matrix} This affine transform. */ set: function(m00, m10, m01, m11, m02, m12) { this._m00 = m00; this._m10 = m10; this._m01 = m01; this._m11 = m11; this._m02 = m02; this._m12 = m12; return this; }, /** * Concatentates this transform with a scaling transformation. * * @name Matrix#scale * @function * @param {Number} scale The scaling factor. * @param {Point} [center] The center for the scaling * transformation. * @return {Matrix} This affine transform. */ /** * Concatentates this transform with a scaling transformation. * * @name Matrix#scale * @function * @param {Number} sx The x-axis scaling factor. * @param {Number} sy The y-axis scaling factor. * @param {Point} [center] The center for the scaling * transformation. * @return {Matrix} This affine transform. */ scale: function(sx, sy /* | scale */, center) { if (arguments.length < 2 || typeof sy === 'object') { // sx is the single scale parameter, representing both sx and sy // Read center first from argument 1, then set sy = sx (thus // modifing the content of argument 1!) center = Point.read(arguments, 1); sy = sx; } else { center = Point.read(arguments, 2); } if (center) this.translate(center); this._m00 *= sx; this._m10 *= sx; this._m01 *= sy; this._m11 *= sy; if (center) this.translate(center.negate()); return this; }, /** * Concatentates this transform with a translate transformation. * * @name Matrix#translate * @function * @param {Point} point The vector to translate by. * @return {Matrix} This affine transform. */ /** * Concatentates this transform with a translate transformation. * * @name Matrix#translate * @function * @param {Number} dx The distance to translate in the x direction. * @param {Number} dy The distance to translate in the y direction. * @return {Matrix} This affine transform. */ translate: function(point) { point = Point.read(arguments); var x = point.x, y = point.y; this._m02 += x * this._m00 + y * this._m01; this._m12 += x * this._m10 + y * this._m11; return this; }, /** * Concatentates this transform with a rotation transformation around an * anchor point. * * @name Matrix#rotate * @function * @param {Number} angle The angle of rotation measured in degrees. * @param {Point} center The anchor point to rotate around. * @return {Matrix} This affine transform. */ /** * Concatentates this transform with a rotation transformation around an * anchor point. * * @name Matrix#rotate * @function * @param {Number} angle The angle of rotation measured in degrees. * @param {Number} x The x coordinate of the anchor point. * @param {Number} y The y coordinate of the anchor point. * @return {Matrix} This affine transform. */ rotate: function(angle, center) { return this.concatenate( Matrix.getRotateInstance.apply(Matrix, arguments)); }, /** * Concatentates this transform with a shear transformation. * * @name Matrix#shear * @function * @param {Point} point The shear factor in x and y direction. * @param {Point} [center] The center for the shear transformation. * @return {Matrix} This affine transform. */ /** * Concatentates this transform with a shear transformation. * * @name Matrix#shear * @function * @param {Number} shx The x shear factor. * @param {Number} shy The y shear factor. * @param {Point} [center] The center for the shear transformation. * @return {Matrix} This affine transform. */ shear: function(shx, shy, center) { // See #scale() for explanation of this: if (arguments.length < 2 || typeof shy === 'object') { center = Point.read(arguments, 1); sy = sx; } else { center = Point.read(arguments, 2); } if (center) this.translate(center); var m00 = this._m00; var m10 = this._m10; this._m00 += shy * this._m01; this._m10 += shy * this._m11; this._m01 += shx * m00; this._m11 += shx * m10; if (center) this.translate(center.negate()); return this; }, /** * @return {String} A string representation of this transform. */ toString: function() { var format = Base.formatNumber; return '[[' + [format(this._m00), format(this._m01), format(this._m02)].join(', ') + '], [' + [format(this._m10), format(this._m11), format(this._m12)].join(', ') + ']]'; }, /** * @return {Number} The scaling factor in the x-direction (m00). */ // scaleX /** * @return {Number} The scaling factor in the y-direction (m11). */ // scaleY /** * @return {Number} The translation in the x-direction (m02). */ // translateX /** * @return {Number} The translation in the y-direction (m12). */ // translateY /** * @return {Number} The shear factor in the x-direction (m01). */ // shearX /** * @return {Number} The shear factor in the y-direction (m10). */ // shearY /** * Concatenates an affine transform to this transform. * * @param {Matrix} mx The transform to concatenate. * @return {Matrix} This affine transform. */ concatenate: function(mx) { var m0 = this._m00, m1 = this._m01; this._m00 = mx._m00 * m0 + mx._m10 * m1; this._m01 = mx._m01 * m0 + mx._m11 * m1; this._m02 += mx._m02 * m0 + mx._m12 * m1; m0 = this._m10; m1 = this._m11; this._m10 = mx._m00 * m0 + mx._m10 * m1; this._m11 = mx._m01 * m0 + mx._m11 * m1; this._m12 += mx._m02 * m0 + mx._m12 * m1; return this; }, /** * Pre-concatenates an affine transform to this transform. * * @param {Matrix} mx The transform to preconcatenate. * @return {Matrix} This affine transform. */ preConcatenate: function(mx) { var m0 = this._m00, m1 = this._m10; this._m00 = mx._m00 * m0 + mx._m01 * m1; this._m10 = mx._m10 * m0 + mx._m11 * m1; m0 = this._m01; m1 = this._m11; this._m01 = mx._m00 * m0 + mx._m01 * m1; this._m11 = mx._m10 * m0 + mx._m11 * m1; m0 = this._m02; m1 = this._m12; this._m02 = mx._m00 * m0 + mx._m01 * m1 + mx._m02; this._m12 = mx._m10 * m0 + mx._m11 * m1 + mx._m12; return this; }, /** * Transforms a point or an array of coordinates by this matrix and returns * the result. If an array is transformed, the the result is stored into a * destination array. * * @param {Point} point The point to be transformed. * * @param {Number[]} src The array containing the source points * as x, y value pairs. * @param {Number} srcOff The offset to the first point to be transformed. * @param {Number[]} dst The array into which to store the transformed * point pairs. * @param {Number} dstOff The offset of the location of the first * transformed point in the destination array. * @param {Number} numPts The number of points to tranform. */ transform: function(/* point | */ src, srcOff, dst, dstOff, numPts) { return arguments.length < 5 // TODO: Check for rectangle and use _tranformBounds? ? this._transformPoint(Point.read(arguments)) : this._transformCoordinates(src, srcOff, dst, dstOff, numPts); }, /** * A faster version of transform that only takes one point and does not * attempt to convert it. */ _transformPoint: function(point, dest, dontNotify) { var x = point.x, y = point.y; if (!dest) dest = new Point(Point.dont); return dest.set( x * this._m00 + y * this._m01 + this._m02, x * this._m10 + y * this._m11 + this._m12, dontNotify ); }, _transformCoordinates: function(src, srcOff, dst, dstOff, numPts) { var i = srcOff, j = dstOff, srcEnd = srcOff + 2 * numPts; while (i < srcEnd) { var x = src[i++]; var y = src[i++]; dst[j++] = x * this._m00 + y * this._m01 + this._m02; dst[j++] = x * this._m10 + y * this._m11 + this._m12; } return dst; }, _transformCorners: function(rect) { var x1 = rect.x, y1 = rect.y, x2 = x1 + rect.width, y2 = y1 + rect.height, coords = [ x1, y1, x2, y1, x2, y2, x1, y2 ]; return this._transformCoordinates(coords, 0, coords, 0, 4); }, /** * Returns the 'transformed' bounds rectangle by transforming each corner * point and finding the new bounding box to these points. This is not * really the transformed reactangle! */ _transformBounds: function(bounds) { var coords = this._transformCorners(bounds), min = coords.slice(0, 2), max = coords.slice(0); for (var i = 2; i < 8; i++) { var val = coords[i], j = i & 1; if (val < min[j]) min[j] = val; else if (val > max[j]) max[j] = val; } return Rectangle.create(min[0], min[1], max[0] - min[0], max[1] - min[1]); }, /** * @return {Number} The determinant of this transform. */ getDeterminant: function() { return this._m00 * this._m11 - this._m01 * this._m10; }, getTranslation: function() { return new Point(this._m02, this._m12); }, getScaling: function() { var sx = Math.sqrt(this._m00 * this._m00 + this._m10 * this._m10), sy = Math.sqrt(this._m01 * this._m01 + this._m11 * this._m11); return new Point(this._m00 < 0 ? -sx : sx, this._m01 < 0 ? -sy : sy); }, /** * @return {Number} The rotation angle of the matrix. If a non-uniform * rotation is applied as a result of a shear() or scale() command, * undefined is returned, as the resulting transformation cannot be * expressed in one rotation angle. */ getRotation: function() { var angle1 = -Math.atan2(this._m01, this._m11), angle2 = Math.atan2(this._m10, this._m00); return Math.abs(angle1 - angle2) < Numerical.TOLERANCE ? angle1 * 180 / Math.PI : undefined; }, /** * @return {Boolean} Whether this transform is the identity transform. */ isIdentity: function() { return this._m00 == 1 && this._m10 == 0 && this._m01 == 0 && this._m11 == 1 && this._m02 == 0 && this._m12 == 0; }, /** * Returns whether the transform is invertible. A transform is not * invertible if the determinant is 0 or any value is non-finite or NaN. * * @return {Boolean} Whether the transform is invertible. */ isInvertible: function() { var det = this.getDeterminant(); return isFinite(det) && det != 0 && isFinite(this._m02) && isFinite(this._m12); }, /** * Checks whether the matrix is singular or not. Singular matrices cannot be * inverted. * * @return {Boolean} Whether the matrix is singular. */ isSingular: function() { return !this.isInvertible(); }, /** * @return {Matrix} An Matrix object representing the inverse * transformation. */ createInverse: function() { var det = this.getDeterminant(); if (isFinite(det) && det != 0 && isFinite(this._m02) && isFinite(this._m12)) { return Matrix.create( this._m11 / det, -this._m10 / det, -this._m01 / det, this._m00 / det, (this._m01 * this._m12 - this._m11 * this._m02) / det, (this._m10 * this._m02 - this._m00 * this._m12) / det); } return null; }, createShiftless: function() { return Matrix.create(this._m00, this._m10, this._m01, this._m11, 0, 0); }, /** * Sets this transform to a scaling transformation. * * @param {Number} sx The x-axis scaling factor. * @param {Number} sy The y-axis scaling factor. * @return {Matrix} This affine transform. */ setToScale: function(sx, sy) { return this.set(sx, 0, 0, sy, 0, 0); }, /** * Sets this transform to a translation transformation. * * @param {Number} dx The distance to translate in the x direction. * @param {Number} dy The distance to translate in the y direction. * @return {Matrix} This affine transform. */ setToTranslation: function(delta) { delta = Point.read(arguments); return this.set(1, 0, 0, 1, delta.x, delta.y); }, /** * Sets this transform to a shearing transformation. * * @param {Number} shx The x-axis shear factor. * @param {Number} shy The y-axis shear factor. * @return {Matrix} This affine transform. */ setToShear: function(shx, shy) { return this.set(1, shy, shx, 1, 0, 0); }, /** * Sets this transform to a rotation transformation. * * @param {Number} angle The angle of rotation measured in degrees. * @param {Number} x The x coordinate of the anchor point. * @param {Number} y The y coordinate of the anchor point. * @return {Matrix} This affine transform. */ setToRotation: function(angle, center) { center = Point.read(arguments, 1); angle = angle * Math.PI / 180; var x = center.x, y = center.y, cos = Math.cos(angle), sin = Math.sin(angle); return this.set(cos, sin, -sin, cos, x - x * cos + y * sin, y - x * sin - y * cos); }, /** * Applies this matrix to the specified Canvas Context. * * @param {CanvasRenderingContext2D} ctx * @param {Boolean} [reset=false] */ applyToContext: function(ctx, reset) { ctx[reset ? 'setTransform' : 'transform']( this._m00, this._m10, this._m01, this._m11, this._m02, this._m12 ); return this; }, statics: { /** @lends Matrix */ // See Point.create() create: function(m00, m10, m01, m11, m02, m12) { return new Matrix(Matrix.dont).set(m00, m10, m01, m11, m02, m12); }, /** * Creates a transform representing a scaling transformation. * * @param {Number} sx The x-axis scaling factor. * @param {Number} sy The y-axis scaling factor. * @return {Matrix} A transform representing a scaling * transformation. */ getScaleInstance: function(sx, sy) { var mx = new Matrix(); return mx.setToScale.apply(mx, arguments); }, /** * Creates a transform representing a translation transformation. * * @param {Number} dx The distance to translate in the x direction. * @param {Number} dy The distance to translate in the y direction. * @return {Matrix} A transform representing a translation * transformation. */ getTranslateInstance: function(delta) { var mx = new Matrix(); return mx.setToTranslation.apply(mx, arguments); }, /** * Creates a transform representing a shearing transformation. * * @param {Number} shx The x-axis shear factor. * @param {Number} shy The y-axis shear factor. * @return {Matrix} A transform representing a shearing transformation. */ getShearInstance: function(shx, shy, center) { var mx = new Matrix(); return mx.setToShear.apply(mx, arguments); }, /** * Creates a transform representing a rotation transformation. * * @param {Number} angle The angle of rotation measured in degrees. * @param {Number} x The x coordinate of the anchor point. * @param {Number} y The y coordinate of the anchor point. * @return {Matrix} A transform representing a rotation transformation. */ getRotateInstance: function(angle, center) { var mx = new Matrix(); return mx.setToRotation.apply(mx, arguments); } } }, new function() { return Base.each({ scaleX: '_m00', scaleY: '_m11', translateX: '_m02', translateY: '_m12', shearX: '_m01', shearY: '_m10' }, function(prop, name) { name = Base.capitalize(name); this['get' + name] = function() { return this[prop]; }; this['set' + name] = function(value) { this[prop] = value; }; }, {}); });