var EPSILON = 10e-12; var TOLERANCE = 10e-6; var _tolerence = EPSILON; function getIntersections2( path1, path2 ){ var locations = []; return locations; } paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _t1, _t2, _u1, _u2 ) { _t1 = _t1 || 0; _t2 = _t2 || 1; _u1 = _u1 || 0; _u2 = _u2 || 1; var loc = { parameter: null }; var ret = _clipFatLine( v1, v2, 0, 1, 0, 1, true, curve1, curve2, loc ); if( ret === 1 ){ var parameter = _t1 + loc.parameter * ( _t2 - _t1 ); locations.push( new CurveLocation( curve1, parameter, curve1.getPoint(parameter), curve2 ) ); } else if( ret < 0) { // We need to subdivide one of the curves // Better if we can subdivide the longest curve var v1lx = v1[6] - v1[0]; var v1ly = v1[7] - v1[1]; var v2lx = v2[6] - v2[0]; var v2ly = v2[7] - v2[1]; var sqrDist1 = v1lx * v1lx + v1ly * v1ly; var sqrDist2 = v2lx * v2lx + v2ly * v2ly; var parts; // A quick and dirty way to determine which curve to subdivide if( sqrDist1 > sqrDist2 ){ parts = Curve.subdivide( v1 ); nuT = ( _t1 + _t2 ) / 2; Curve.getIntersections2( parts[0], v2, curve1, curve2, locations, _t1, nuT, _u1, _u2 ); Curve.getIntersections2( parts[1], v2, curve1, curve2, locations, nuT, _t2, _u1, _u2 ); } else { parts = Curve.subdivide( v2 ); nuU = ( _u1 + _u2 ) / 2; Curve.getIntersections2( v1, parts[0], curve1, curve2, locations, _t1, _t2, _u1, nuU ); Curve.getIntersections2( v1, parts[1], curve1, curve2, locations, _t1, _t2, nuU, _u2 ); } } }; function _clipFatLine( v1, v2, t1, t2, u1, u2, tvalue, curve1, curve2, location ){ if( t1 >= t2 - _tolerence && t1 <= t2 + _tolerence && u1 >= u2 - _tolerence && u1 <= u2 + _tolerence ){ location.parameter = u1; return 1; } else { var p0x = v1[0], p0y = v1[1]; var p3x = v1[6], p3y = v1[7]; var p1x = v1[2], p1y = v1[3]; var p2x = v1[4], p2y = v1[5]; var q0x = v2[0], q0y = v2[1]; var q3x = v2[6], q3y = v2[7]; var q1x = v2[2], q1y = v2[3]; var q2x = v2[4], q2y = v2[5]; // Calculate the fat-line L var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y ); var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y ); var dmin, dmax; if( d1 * d2 > 0){ // 3/4 * min{0, d1, d2} dmin = 0.75 * Math.min( 0, d1, d2 ); dmax = 0.75 * Math.max( 0, d1, d2 ); } else { // 4/9 * min{0, d1, d2} dmin = 4 * Math.min( 0, d1, d2 ) / 9.0; dmax = 4 * Math.max( 0, d1, d2 ) / 9.0; } // The convex hull for the non-parametric bezier curve D(ti, di(t)) var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y ); var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y ); var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y ); var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y ); var mindist = Math.min( dq0, dq1, dq2, dq3 ); var maxdist = Math.max( dq0, dq1, dq2, dq3 ); // If the fatlines don't overlap, we have no intersections! if( dmin > maxdist || dmax < mindist ){ return 0; } // Calculate the convex hull for non-parametric bezier curve D(ti, di(t)) var Dt = _convexhull( dq0, dq1, dq2, dq3 ); // Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax // for the coorresponding t values var tmindmin = Infinity, tmaxdmin = -Infinity, tmindmax = Infinity, tmaxdmax = -Infinity, ixd, ixdx, i, len; var dmina = [0, dmin, 2, dmin]; var dmaxa = [0, dmax, 2, dmax]; for (i = 0, len = Dt.length; i < len; i++) { var Dtl = Dt[i]; // ixd = Dtl.intersect( vecdmin ); ixd = _intersectLines( Dtl, dmina); if( ixd ){ ixdx = ixd[0]; tmindmin = ( ixdx < tmindmin )? ixdx : tmindmin; tmaxdmin = ( ixdx > tmaxdmin )? ixdx : tmaxdmin; } // ixd = Dtl.intersect( vecdmax ); ixd = _intersectLines( Dtl, dmaxa); if( ixd ){ ixdx = ixd[0]; tmindmax = ( ixdx < tmindmax )? ixdx : tmindmax; tmaxdmax = ( ixdx > tmaxdmax )? ixdx : tmaxdmax; } } // if dmin doesnot intersect with the convexhull, reset it to 0 tmindmin = ( tmindmin === Infinity )? 0 : tmindmin; tmaxdmin = ( tmaxdmin === -Infinity )? 0 : tmaxdmin; // if dmax doesnot intersect with the convexhull, reset it to 1 tmindmax = ( tmindmax === Infinity )? 1 : tmindmax; tmaxdmax = ( tmaxdmax === -Infinity )? 1 : tmaxdmax; var tmin = Math.min( tmindmin, tmaxdmin, tmindmax, tmaxdmax ); var tmax = Math.max( tmindmin, tmaxdmin, tmindmax, tmaxdmax); // We need to toggle clipping both curves alternatively // tvalue indicates whether to compare t or u for testing for convergence var nuV2 = Curve.getPart( v2, tmin, tmax ); var convRate, parts; if( tvalue ){ nuT1 = t1 + tmin * ( t2 - t1 ); nuT2 = t1 + tmax * ( t2 - t1 ); // Test the convergence rate // if the clipping fails to converge by atleast 20%, // we need to subdivide the longest curve and try again. var td = ( t2 - t1 ); convRate = ( td - ( nuT2 - nuT1 ) ) / td; // console.log( 'convergence rate for t = ' + convRate + "%" ); if( convRate <= 0.2) { // subdivide the curve and try again return -1; } else { return _clipFatLine( nuV2, v1, nuT1, nuT2, u1, u2, !tvalue, curve1, curve2, location ); } } else { nuU1 = u1 + tmin * ( u2 - u1 ); nuU2 = u1 + tmax * ( u2 - u1 ); var ud = ( u2 - u1 ); convRate = ( ud - ( nuU2 - nuU1 ) ) / ud; // console.log( 'convergence rate for u = ' + convRate + "%" ); if( convRate <= 0.2) { // subdivide the curve and try again return -1; } else { return _clipFatLine( nuV2, v1, t1, t2, nuU1, nuU2 , !tvalue, curve1, curve2, location ); } } } } /** * Clip curve values V2 with fat-line of v1 and vice versa * @param {Array} v - Section of the first curve, for which we will make a fat-line * @param {Number} t1 - start parameter for v in vOrg * @param {Number} t2 - end parameter for v in vOrg * @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v * @param {Number} u1 - start parameter for v2 in v2Org * @param {Number} u2 - end parameter for v2 in v2Org * @param {Array} vOrg - The original curve values for v * @param {Array} v2Org - The original curve values for v2 * @return {[type]} */ function _clipBezFatLine( v1, t1, t2, v2, u1, u2, vOrg, v2Org ){ } function _convexhull( dq0, dq1, dq2, dq3 ){ // Prepare the convex hull for D(ti, di(t)) var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 ); var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 ); // Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3] if( distq1 * distq2 < 0 ) { // dq1 and dq2 lie on different sides on [0, q0, 1, q3] // Convexhull is a quadrilatteral and line [0, q0, 1, q3] is NOT part of the convexhull // so we are pretty much done here. Dt = [ [ 0.0, dq0, 0.3333333333333333, dq1 ], [ 0.3333333333333333, dq1, 1.0, dq3 ], [ 0.6666666666666666, dq2, 0.0, dq0 ], [ 1.0, dq3, 0.6666666666666666, dq2 ] ]; } else { // dq1 and dq2 lie on the same sides on [0, q0, 1, q3] // Convexhull can be a triangle or a quadrilatteral and // line [0, q0, 1, q3] is part of the convexhull. // Check if the hull is a triangle or a quadrilatteral var dqmin, dqmax, dqapex1, dqapex2; distq1 = Math.abs(distq1); distq2 = Math.abs(distq2); var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny; if( distq1 > distq2 ){ dqmin = [ 0.6666666666666666, dq2 ]; dqmax = [ 0.3333333333333333, dq1 ]; // apex is dq3 and the other apex point is dq0 // vector dqapex->dqapex2 or the base vector which is already part of c-hull vqa1a2x = 1.0, vqa1a2y = dq3 - dq0; // vector dqapex->dqmax vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1; // vector dqapex->dqmin vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2; } else { dqmin = [ 0.3333333333333333, dq1 ]; dqmax = [ 0.6666666666666666, dq2 ]; // apex is dq0 in this case, and the other apex point is dq3 // vector dqapex->dqapex2 or the base vector which is already part of c-hull vqa1a2x = -1.0, vqa1a2y = dq0 - dq3; // vector dqapex->dqmax vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2; // vector dqapex->dqmin vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1; } // compare cross products of these vectors to determine, if // point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ] var vcrossa1a2_a1Max = vqa1a2x * vqa1Maxy - vqa1a2y * vqa1Maxx; var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx; var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx; if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){ // Point [2/3, dq2] is inside the triangle and the convex hull is a triangle Dt = [ [ 0.0, dq0, dqmax[0], dqmax[1] ], [ dqmax[0], dqmax[1], 1.0, dq3 ], [ 1.0, dq3, 0.0, dq0 ] ]; } else { // Convexhull is a quadrilatteral and we need all lines in the correct order where // line [0, q0, 1, q3] is part of the convex hull Dt = [ [ 0.0, dq0, 0.3333333333333333, dq1 ], [ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ], [ 0.6666666666666666, dq2, 1.0, dq3 ], [ 1.0, dq3, 0.0, dq0 ] ]; } } return Dt; } function drawFatline( v1 ) { var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false ); var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] ); var d1 = l.getSide( p1 ) * l.getDistance( p1 ); var d2 = l.getSide( p2 ) * l.getDistance( p2 ); var dmin, dmax; if( d1 * d2 > 0){ // 3/4 * min{0, d1, d2} dmin = 0.75 * Math.min( 0, d1, d2 ); dmax = 0.75 * Math.max( 0, d1, d2 ); } else { // 4/9 * min{0, d1, d2} dmin = 4 * Math.min( 0, d1, d2 ) / 9.0; dmax = 4 * Math.max( 0, d1, d2 ) / 9.0; } var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] ); ll.style.strokeColor = new Color( 0,0,0.9, 0.8); var lp1 = ll.segments[0].point; var lp2 = ll.segments[1].point; var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 ); var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) ); var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) ); var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) ); var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) ); ll = new Path.Line( p11, p12 ); ll.style.strokeColor = new Color( 0,0,0.9); ll = new Path.Line( p21, p22 ); ll.style.strokeColor = new Color( 0,0,0.9); } function plotD_vs_t( x, y, arr, dmin, dmax, tmin, tmax, yscale, tvalue ){ yscale = yscale || 1; new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa'; new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa'; var clr = (tvalue)? '#a00' : '#00a'; new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ).style.strokeColor = '#000'; new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ).style.strokeColor = '#000'; new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ).style.strokeColor = clr; new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ).style.strokeColor = clr; var pnt = []; for (var i = 0; i < arr.length; i++) { // pnt.push( new Point( x + arr[i].point.x * 190, y + arr[i].point.y * yscale ) ); pnt.push( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ) ); var pth = new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ), new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) ); pth.style.strokeColor = '#999'; } // var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] ); // pth.closed = true; new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ).style.strokeColor = clr; } function signum(num) { return ( num > 0 )? 1 : ( num < 0 )? -1 : 0; } var _intersectLines = function(v1, v2) { var result, a1x, a2x, b1x, b2x, a1y, a2y, b1y, b2y; a1x = v1[0]; a1y = v1[1]; a2x = v1[2]; a2y = v1[3]; b1x = v2[0]; b1y = v2[1]; b2x = v2[2]; b2y = v2[3]; var ua_t = (b2x - b1x) * (a1y - b1y) - (b2y - b1y) * (a1x - b1x); var ub_t = (a2x - a1x) * (a1y - b1y) - (a2y - a1y) * (a1x - b1x); var u_b = (b2y - b1y) * (a2x - a1x) - (b2x - b1x) * (a2y - a1y); if ( u_b !== 0 ) { var ua = ua_t / u_b; var ub = ub_t / u_b; if ( 0 <= ua && ua <= 1 && 0 <= ub && ub <= 1 ) { return [a1x + ua * (a2x - a1x), a1y + ua * (a2y - a1y)]; } } }; var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){ var vx = a2x - a1x, vy = a2y - a1y; var bax = bx - a1x, bay = by - a1y; var ba2x = bx - a2x, ba2y = by - a2y; // ba *cross* v var cvb = bax * vy - bay * vx; if (cvb === 0) { cvb = bax * vx + bay * vy; if (cvb > 0) { cvb = (bax - vx) * vx + (bay -vy) * vy; if (cvb < 0){ cvb = 0; } } } var side = cvb < 0 ? -1 : cvb > 0 ? 1 : 0; // Calculate the distance var m = vy / vx, b = a1y - ( m * a1x ); var dist = Math.abs( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 ); var dista1 = Math.sqrt( bax * bax + bay * bay ); var dista2 = Math.sqrt( ba2x * ba2x + ba2y * ba2y ); return side * Math.min( dist, dista1, dista2 ); };