diff --git a/src/path/Curve.js b/src/path/Curve.js index c84fad64..b154ab49 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -617,13 +617,7 @@ statics: { p2 = v[coord + 6], c = 3 * (c1 - p1), b = 3 * (c2 - c1) - c, - a = p2 - p1 - c - b, - isZero = Numerical.isZero; - // If both a and b are near zero, we should treat the curve as a line in - // order to find the right solutions in some edge-cases in - // Curve.getParameterOf() - if (isZero(a) && isZero(b)) - a = b = 0; + a = p2 - p1 - c - b; return Numerical.solveCubic(a, b, c, p1 - val, roots, min, max); }, diff --git a/src/util/Numerical.js b/src/util/Numerical.js index ad5f44cc..a970267a 100644 --- a/src/util/Numerical.js +++ b/src/util/Numerical.js @@ -161,10 +161,12 @@ var Numerical = new function() { * http://www.cs.berkeley.edu/~wkahan/Math128/Cubic.pdf * Blinn J. - "How to solve a Quadratic Equation" * - * @param {Number} a The quadratic term - * @param {Number} b The linear term - * @param {Number} c The constant term - * @param {Number[]} roots The array to store the roots in + * @param {Number} a the quadratic term + * @param {Number} b the linear term + * @param {Number} c the constant term + * @param {Number[]} roots the array to store the roots in + * @param {Number} [min] the lower bound of the allowed roots + * @param {Number} [max] the upper bound of the allowed roots * @return {Number} The number of real roots found, or -1 if there are * infinite solutions * @@ -177,21 +179,15 @@ var Numerical = new function() { D; b /= 2; D = b * b - a * c; // Discriminant - /* - * If the discriminant is very small, we can try to pre-condition - * the coefficients, so that we may get better accuracy - */ + // If the discriminant is very small, we can try to pre-condition + // the coefficients, so that we may get better accuracy if (D !== 0 && abs(D) < MACHINE_EPSILON) { // If the geometric mean of the coefficients is small enough - var pow = Math.pow, - gmC = pow(abs(a*b*c), 1/3); + var gmC = pow(abs(a * b * c), 1 / 3); if (gmC < 1e-8) { - /* - * we multiply with a factor to normalize the - * coefficients. The factor is just the nearest exponent - * of 10, big enough to raise all the coefficients to - * nearly [-1, +1] range. - */ + // We multiply with a factor to normalize the coefficients. + // The factor is just the nearest exponent of 10, big enough + // to raise all the coefficients to nearly [-1, +1] range. var mult = pow(10, abs( Math.floor(Math.log(gmC) * Math.LOG10E))); if (!isFinite(mult)) @@ -203,10 +199,10 @@ var Numerical = new function() { D = b * b - a * c; } } - if (abs(a) < MACHINE_EPSILON) { + if (abs(a) < EPSILON) { // This could just be a linear equation - if (abs(B) < MACHINE_EPSILON) - return abs(c) < MACHINE_EPSILON ? -1 : 0; + if (abs(B) < EPSILON) + return abs(c) < EPSILON ? -1 : 0; x1 = -c / B; } else { // No real roots if D < 0 @@ -251,26 +247,29 @@ var Numerical = new function() { * W. Kahan's paper contains inferences on accuracy of cubic * zero-finding methods. Also testing methods for robustness. * - * @param {Number} a The cubic term (x³ term). - * @param {Number} b The quadratic term (x² term). - * @param {Number} c The linear term (x term). - * @param {Number} d The constant term - * @param {Number[]} roots The array to store the roots in - * @return {Number} The number of real roots found, or -1 if there are + * @param {Number} a the cubic term (x³ term) + * @param {Number} b the quadratic term (x² term) + * @param {Number} c the linear term (x term) + * @param {Number} d the constant term + * @param {Number[]} roots the array to store the roots in + * @param {Number} [min] the lower bound of the allowed roots + * @param {Number} [max] the upper bound of the allowed roots + * @return {Number} the number of real roots found, or -1 if there are * infinite solutions * * @author Harikrishnan Gopalakrishnan */ solveCubic: function(a, b, c, d, roots, min, max) { - var x, b1, c2, count = 0; + var count = 0, + x, b1, c2; // If a or d is zero, we only need to solve a quadratic, so we set // the coefficients appropriately. - if (a === 0) { + if (abs(a) < EPSILON) { a = b; b1 = c; c2 = d; x = Infinity; - } else if (d === 0) { + } else if (abs(d) < EPSILON) { b1 = b; c2 = c; x = 0;