diff --git a/src/path/Curve.js b/src/path/Curve.js index dff14f4d..1e92ad9f 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -907,6 +907,49 @@ statics: { getLocationOf: function(point) { var t = this.getParameterOf.apply(this, arguments); return t != null ? new CurveLocation(this, t) : null; + }, + + getNearestLocation: function(point) { + var values = this.getValues(), + precision = 1 / 100, + tolerance = Numerical.TOLERANCE, + minDist = Infinity, + minT = 0, + max = 1 + tolerance; // Accomodate imprecision + + // First scan roughly for a close location + for (var t = 0; t <= max; t += precision) { + var pt = Curve.evaluate(values, t, true, 0), + dist = point.getDistance(pt, true); + if (dist < minDist) { + minDist = dist; + minT = t; + } + } + + function closer(t) { + if (t >= 0 && t <= 1) { + var dist = point.getDistance( + Curve.evaluate(values, t, true, 0), true); + if (dist < minDist) { + minT = t; + minDist = dist; + return true; + } + } + } + + // Now iteratively refine solution until we reach desired precision. + while (precision > tolerance) { + if (!closer(minT - precision) && !closer(minT + precision)) + precision /= 2; + } + var pt = Curve.evaluate(values, minT, true, 0); + return new CurveLocation(this, minT, pt, null, point.getDistance(pt)); + }, + + getNearestPoint: function(point) { + return this.getNearestLocation(point).getPoint(); } /** @@ -956,298 +999,4 @@ statics: { * is a curve time parameter. * @return {Point} the curvature of the curve at the specified offset. */ -}), -new function() { // Scope for methods that require numerical integration - - function getLengthIntegrand(v) { - // Calculate the coefficients of a Bezier derivative. - var p1x = v[0], p1y = v[1], - c1x = v[2], c1y = v[3], - c2x = v[4], c2y = v[5], - p2x = v[6], p2y = v[7], - - ax = 9 * (c1x - c2x) + 3 * (p2x - p1x), - bx = 6 * (p1x + c2x) - 12 * c1x, - cx = 3 * (c1x - p1x), - - ay = 9 * (c1y - c2y) + 3 * (p2y - p1y), - by = 6 * (p1y + c2y) - 12 * c1y, - cy = 3 * (c1y - p1y); - - return function(t) { - // Calculate quadratic equations of derivatives for x and y - var dx = (ax * t + bx) * t + cx, - dy = (ay * t + by) * t + cy; - return Math.sqrt(dx * dx + dy * dy); - }; - } - - // Amount of integral evaluations for the interval 0 <= a < b <= 1 - function getIterations(a, b) { - // Guess required precision based and size of range... - // TODO: There should be much better educated guesses for - // this. Also, what does this depend on? Required precision? - return Math.max(2, Math.min(16, Math.ceil(Math.abs(b - a) * 32))); - } - - return { - statics: true, - - getLength: function(v, a, b) { - if (a === undefined) - a = 0; - if (b === undefined) - b = 1; - // if (p1 == c1 && p2 == c2): - if (v[0] == v[2] && v[1] == v[3] && v[6] == v[4] && v[7] == v[5]) { - // Straight line - var dx = v[6] - v[0], // p2x - p1x - dy = v[7] - v[1]; // p2y - p1y - return (b - a) * Math.sqrt(dx * dx + dy * dy); - } - var ds = getLengthIntegrand(v); - return Numerical.integrate(ds, a, b, getIterations(a, b)); - }, - - getArea: function(v) { - var p1x = v[0], p1y = v[1], - c1x = v[2], c1y = v[3], - c2x = v[4], c2y = v[5], - p2x = v[6], p2y = v[7]; - // http://objectmix.com/graphics/133553-area-closed-bezier-curve.html - return ( 3.0 * c1y * p1x - 1.5 * c1y * c2x - - 1.5 * c1y * p2x - 3.0 * p1y * c1x - - 1.5 * p1y * c2x - 0.5 * p1y * p2x - + 1.5 * c2y * p1x + 1.5 * c2y * c1x - - 3.0 * c2y * p2x + 0.5 * p2y * p1x - + 1.5 * p2y * c1x + 3.0 * p2y * c2x) / 10; - }, - - getParameterAt: function(v, offset, start) { - if (offset === 0) - return start; - // See if we're going forward or backward, and handle cases - // differently - var forward = offset > 0, - a = forward ? start : 0, - b = forward ? 1 : start, - offset = Math.abs(offset), - // Use integrand to calculate both range length and part - // lengths in f(t) below. - ds = getLengthIntegrand(v), - // Get length of total range - rangeLength = Numerical.integrate(ds, a, b, - getIterations(a, b)); - if (offset >= rangeLength) - return forward ? b : a; - // Use offset / rangeLength for an initial guess for t, to - // bring us closer: - var guess = offset / rangeLength, - length = 0; - // Iteratively calculate curve range lengths, and add them up, - // using integration precision depending on the size of the - // range. This is much faster and also more precise than not - // modifing start and calculating total length each time. - function f(t) { - var count = getIterations(start, t); - length += start < t - ? Numerical.integrate(ds, start, t, count) - : -Numerical.integrate(ds, t, start, count); - start = t; - return length - offset; - } - return Numerical.findRoot(f, ds, - forward ? a + guess : b - guess, // Initial guess for x - a, b, 16, /*#=*/ Numerical.TOLERANCE); - } - }; -}, new function() { // Scope for nearest point on curve problem - - // Solving the Nearest Point-on-Curve Problem and A Bezier-Based Root-Finder - // by Philip J. Schneider from "Graphics Gems", Academic Press, 1990 - // Optimised for Paper.js - - var maxDepth = 32, - epsilon = Math.pow(2, -maxDepth - 1); - - var zCubic = [ - [1.0, 0.6, 0.3, 0.1], - [0.4, 0.6, 0.6, 0.4], - [0.1, 0.3, 0.6, 1.0] - ]; - - var xAxis = new Line(new Point(0, 0), new Point(1, 0)); - - /** - * Given a point and a Bezier curve, generate a 5th-degree Bezier-format - * equation whose solution finds the point on the curve nearest the - * user-defined point. - */ - function toBezierForm(v, point) { - var n = 3, // degree of B(t) - degree = 5, // degree of B(t) . P - c = [], - d = [], - cd = [], - w = []; - for(var i = 0; i <= n; i++) { - // Determine the c's -- these are vectors created by subtracting - // point point from each of the control points - c[i] = v[i].subtract(point); - // Determine the d's -- these are vectors created by subtracting - // each control point from the next - if (i < n) - d[i] = v[i + 1].subtract(v[i]).multiply(n); - } - - // Create the c,d table -- this is a table of dot products of the - // c's and d's - for (var row = 0; row < n; row++) { - cd[row] = []; - for (var column = 0; column <= n; column++) - cd[row][column] = d[row].dot(c[column]); - } - - // Now, apply the z's to the dot products, on the skew diagonal - // Also, set up the x-values, making these "points" - for (var i = 0; i <= degree; i++) - w[i] = new Point(i / degree, 0); - - for (var k = 0; k <= degree; k++) { - var lb = Math.max(0, k - n + 1), - ub = Math.min(k, n); - for (var i = lb; i <= ub; i++) { - var j = k - i; - w[k].y += cd[j][i] * zCubic[j][i]; - } - } - - return w; - } - - /** - * Given a 5th-degree equation in Bernstein-Bezier form, find all of the - * roots in the interval [0, 1]. Return the number of roots found. - */ - function findRoots(w, depth) { - switch (countCrossings(w)) { - case 0: - // No solutions here - return []; - case 1: - // Unique solution - // Stop recursion when the tree is deep enough - // if deep enough, return 1 solution at midpoint - if (depth >= maxDepth) - return [0.5 * (w[0].x + w[5].x)]; - // Compute intersection of chord from first control point to last - // with x-axis. - if (isFlatEnough(w)) { - var line = new Line(w[0], w[5], true); - return [ Numerical.isZero(line.vector.getLength(true)) - ? line.point.x - : xAxis.intersect(line).x ]; - } - } - - // Otherwise, solve recursively after - // subdividing control polygon - var p = [[]], - left = [], - right = []; - for (var j = 0; j <= 5; j++) - p[0][j] = new Point(w[j]); - - // Triangle computation - for (var i = 1; i <= 5; i++) { - p[i] = []; - for (var j = 0 ; j <= 5 - i; j++) - p[i][j] = p[i - 1][j].add(p[i - 1][j + 1]).multiply(0.5); - } - for (var j = 0; j <= 5; j++) { - left[j] = p[j][0]; - right[j] = p[5 - j][j]; - } - - return findRoots(left, depth + 1).concat(findRoots(right, depth + 1)); - } - - /** - * Count the number of times a Bezier control polygon crosses the x-axis. - * This number is >= the number of roots. - */ - function countCrossings(v) { - var crossings = 0, - prevSign = null; - for (var i = 0, l = v.length; i < l; i++) { - var sign = v[i].y < 0 ? -1 : 1; - if (prevSign != null && sign != prevSign) - crossings++; - prevSign = sign; - } - return crossings; - } - - /** - * Check if the control polygon of a Bezier curve is flat enough for - * recursive subdivision to bottom out. - */ - function isFlatEnough(v) { - // Find the perpendicular distance from each interior control point to - // line connecting v[0] and v[degree] - - // Derive the implicit equation for line connecting first - // and last control points - var n = v.length - 1, - a = v[0].y - v[n].y, - b = v[n].x - v[0].x, - c = v[0].x * v[n].y - v[n].x * v[0].y, - maxAbove = 0, - maxBelow = 0; - // Find the largest distance - for (var i = 1; i < n; i++) { - // Compute distance from each of the points to that line - var val = a * v[i].x + b * v[i].y + c, - dist = val * val; - if (val < 0 && dist > maxBelow) { - maxBelow = dist; - } else if (dist > maxAbove) { - maxAbove = dist; - } - } - // Compute intercepts of bounding box - return Math.abs((maxAbove + maxBelow) / (2 * a * (a * a + b * b))) - < epsilon; - } - - return { - getNearestLocation: function(point) { - // NOTE: If we allow #matrix on Path, we need to inverse-transform - // point here first. - // point = this._matrix.inverseTransform(point); - var w = toBezierForm(this.getPoints(), point); - // Also look at beginning and end of curve (t = 0 / 1) - var roots = findRoots(w, 0).concat([0, 1]); - var minDist = Infinity, - minT, - minPoint; - // There are always roots, since we add [0, 1] above. - for (var i = 0; i < roots.length; i++) { - var pt = this.getPointAt(roots[i], true), - dist = point.getDistance(pt, true); - // We're comparing squared distances - if (dist < minDist) { - minDist = dist; - minT = roots[i]; - minPoint = pt; - } - } - return new CurveLocation(this, minT, minPoint, null, - Math.sqrt(minDist)); - }, - - getNearestPoint: function(point) { - return this.getNearestLocation(point).getPoint(); - } - }; -}); +}));