diff --git a/src/path/Curve.js b/src/path/Curve.js index ae7286f3..03fc1e0a 100644 --- a/src/path/Curve.js +++ b/src/path/Curve.js @@ -822,6 +822,50 @@ statics: /** @lends Curve */{ + t * t * t * v3, padding); } + }, + + /** + * Splits the specified curve values into segments of curves that are monotone in the specified + * coordinate direction (0: monotone in x-direction, 1: monotone in y-direction. If the curve is + * already monotone, an array only containing the original values will be returned. + */ + splitToMonoCurves: function(v, coord) { + var vMono = []; + // getLength is a rather expensive operation, therefore we test two cheap preconditions first + if (v[0] === v[6] && v[1] === v[7] && Curve.getLength(v) === 0) + return vMono; + var o0 = v[1 - coord], + o1 = v[3 - coord], + o2 = v[5 - coord], + o3 = v[7 - coord]; + if (o0 >= o1 === o1 >= o2 && o1 >= o2 === o2 >= o3 || Curve.isStraight(v)) { + // Straight curves and curves with points and control points ordered + // in coordinate direction are guaranteed to be monotone. + vMono.push(v); + } else { + var a = 3 * (o1 - o2) - o0 + o3, + b = 2 * (o0 + o2) - 4 * o1, + c = o1 - o0, + tMin = 4e-7, + tMax = 1 - tMin, + roots = [], + n = Numerical.solveQuadratic(a, b, c, roots, tMin, tMax); + if (n === 0) { + vMono.push(v); + } else { + roots.sort(); + var t = roots[0], + parts = Curve.subdivide(v, t); + vMono.push(parts[0]); + if (n > 1) { + t = (roots[1] - t) / (1 - t); + parts = Curve.subdivide(parts[1], t); + vMono.push(parts[0]); + } + vMono.push(parts[1]); + } + } + return vMono; } }}, Base.each( ['getBounds', 'getStrokeBounds', 'getHandleBounds'], diff --git a/src/path/PathItem.Boolean.js b/src/path/PathItem.Boolean.js index 9d034acd..10f89e5b 100644 --- a/src/path/PathItem.Boolean.js +++ b/src/path/PathItem.Boolean.js @@ -100,7 +100,7 @@ PathItem.inject(new function() { for (var i = 0, l = paths.length; i < l; i++) { var path = paths[i]; segments.push.apply(segments, path._segments); - monoCurves.push.apply(monoCurves, path._getMonoCurves()); + monoCurves.push.apply(monoCurves, path._getCurves()); // Keep track if there are valid intersections other than // overlaps in each path. path._overlapsOnly = path._validOverlapsOnly = true; @@ -295,143 +295,183 @@ PathItem.inject(new function() { return results || locations; } + /** - * Private method that returns the winding contribution of the given point - * with respect to a given set of monotonic curves. + * Adds the winding contribution of a curve to the already found windings. The curve does not have + * to be a monotone curve. + * + * @param v the values of the curve + * @param vPrev + * @param px x coordinate of the point to be examined + * @param py y coordinate of the point to be examined + * @param windings an array of length 2. Index 0 is the windings to the left, index 1 to the right. + * @param onCurveWinding + * @param coord The coordinate direction of the cast ray (0 = x, 1 = y) */ + function addWindingContribution(v, vPrev, px, py, windings, onCurveWinding, coord) { + var epsilon = 2e-7; + var pa = coord ? py : px; // point's abscissa + var po = coord ? px : py; // point's ordinate + var vo0 = v[1 - coord], + vo3 = v[7 - coord]; + if ((vo0 > po && vo3 > po) || + (vo0 < po && vo3 < po)) { + // if curve is outside the ordinates' range, no intersection with the ray is possible + return v; + } + var aBefore = pa - epsilon; + var aAfter = pa + epsilon; + var va0 = v[coord], + va1 = v[2 + coord], + va2 = v[4 + coord], + va3 = v[6 + coord]; + if (vo0 === vo3) { + if (aAfter > va1 && aBefore < va3 || aAfter > va3 && aBefore < va1) + onCurveWinding[0] = (onCurveWinding[0] || 0); + // if curve does not change in ordinate direction, windings will be added by adjacent curves + return vPrev; + } + var roots = []; + var a = (va0 < aBefore && va1 < aBefore && va2 < aBefore && va3 < aBefore) || + (va0 > aAfter && va1 > aAfter && va2 > aAfter && va3 > aAfter) + ? (va0 + va3) / 2 + : po === vo0 ? va0 + : po === vo3 ? va3 + : Curve.solveCubic(v, coord ? 0 : 1, po, roots, 0, 1) === 1 + ? Curve.getPoint(v, roots[0])[coord ? 'y' : 'x'] + : (va0 + va3) / 2; + var winding = vo0 < vo3 ? 1 : -1; + var prevWinding = vPrev[1 - coord] < vPrev[7 - coord] ? 1 : -1; + var prevAEnd = vPrev[6 + coord]; + var prevAStart = vPrev[coord]; + if (a != null) { + if (po !== vo0) { + // standard case, the ray crosses the curve, but not at the start point + if (a < aBefore) { + windings[0] += winding; + } else if (a > aAfter) { + windings[1] += winding; + } else { + onCurveWinding[0] = (onCurveWinding[0] || 0) + winding; + windings[0] += winding; + windings[1] += winding; + } + } else if (a >= aBefore && a <= aAfter) { + if (prevAEnd >= aBefore && prevAEnd <= aAfter) { + if (winding !== prevWinding) { + onCurveWinding[0] = (onCurveWinding[0] || 0) + winding; + if (prevAStart < v[6]) { // ToDo: This should be done with comparing tangens + windings[1] += winding; + } else if (prevAStart > v[6]) { + windings[0] += winding; + } else { + windings[0] += winding; + windings[1] += winding; + } + } + } else { + onCurveWinding[0] = (onCurveWinding[0] || 0) + winding; + if (a > prevAEnd) { + windings[1] += winding; + } else { + windings[0] += winding; + } + } + } else if (prevAEnd >= aBefore && prevAEnd <= aAfter) { + if (winding !== prevWinding) { + onCurveWinding[0] = (onCurveWinding[0] || 0) + winding; + if (a < aBefore) { + windings[0] += 2 * winding; + } else if (a > aAfter) { + windings[1] += 2 * winding; + } + } + } else if ((pa - prevAEnd) * (pa - a) < 0) { + onCurveWinding[0] = (onCurveWinding[0] || 0); + if (a < aBefore) { + windings[0] += winding; + } else if (a > aAfter) { + windings[1] += winding; + } + } else if (winding !== prevWinding) { + if (a < aBefore) { + windings[0] += winding; + } else if (a > aAfter) { + windings[1] += winding; + } + } + } + return v; + } + + function getWinding(point, curves, horizontal) { var epsilon = /*#=*/Numerical.WINDING_EPSILON, - px = point.x, - py = point.y, - windLeft = 0, - windRight = 0, + windings = [0, 0], // left, right winding + isOnPath = [null], + onPathWinding = 0, length = curves.length, - roots = [], - abs = Math.abs; - // Horizontal curves may return wrong results, since the curves are - // monotonic in y direction and this is an indeterminate state. - if (horizontal) { - var yTop = -Infinity, - yBottom = Infinity, - yBefore = py - epsilon, - yAfter = py + epsilon; - // Find the closest top and bottom intercepts for the vertical line. - for (var i = 0; i < length; i++) { - var values = curves[i].values, - count = Curve.solveCubic(values, 0, px, roots, 0, 1); - for (var j = count - 1; j >= 0; j--) { - var y = Curve.getPoint(values, roots[j]).y; - if (y < yBefore && y > yTop) { - yTop = y; - } else if (y > yAfter && y < yBottom) { - yBottom = y; + vPrev; + var pathPrev = null; + var coord = horizontal ? 1 : 0; + for (var i = 0; i < length; i++) { + var curve = curves[i]; + if (pathPrev !== curve.getPath()) { + if (isOnPath[0] != null) { + onPathWinding++; + isOnPath[0] = null; + } + vPrev = null; + var curvePrev = curve.getPrevious(); + while (curvePrev && curvePrev != curve) { + var v2 = curvePrev.getValues(); + if (v2[1 - coord] != v2[7 - coord]) { + vPrev = v2; + break; } + curvePrev = curvePrev.getPrevious(); } } - // Shift the point lying on the horizontal curves by half of the - // closest top and bottom intercepts. - yTop = (yTop + py) / 2; - yBottom = (yBottom + py) / 2; - if (yTop > -Infinity) - windLeft = getWinding(new Point(px, yTop), curves).winding; - if (yBottom < Infinity) - windRight = getWinding(new Point(px, yBottom), curves).winding; - } else { - var xBefore = px - epsilon, - xAfter = px + epsilon, - prevWinding, - prevXEnd, - // Separately count the windings for points on curves. - windLeftOnCurve = 0, - windRightOnCurve = 0, - isOnCurve = false; - for (var i = 0; i < length; i++) { - var curve = curves[i], - winding = curve.winding, - values = curve.values, - yStart = values[1], - yEnd = values[7]; - // The first curve of a loop holds the last curve with non-zero - // winding. Retrieve and use it here (See _getMonoCurve()). - if (curve.last) { - // Get the end x coordinate and winding of the last - // non-horizontal curve, which will be the previous - // non-horizontal curve for the first curve in the loop. - prevWinding = curve.last.winding; - prevXEnd = curve.last.values[6]; - // Reset the on curve flag for each loop. - isOnCurve = false; - } - // Since the curves are monotonic in y direction, we can just - // compare the endpoints of the curve to determine if the ray - // from query point along +-x direction will intersect the - // monotonic curve. - if (py >= yStart && py <= yEnd || py >= yEnd && py <= yStart) { - if (winding) { - // Calculate the x value for the ray's intersection. - var x = py === yStart ? values[0] - : py === yEnd ? values[6] - : Curve.solveCubic(values, 1, py, roots, 0, 1) === 1 - ? Curve.getPoint(values, roots[0]).x - : null; - if (x != null) { - // Test if the point is on the current mono-curve. - if (x >= xBefore && x <= xAfter) { - isOnCurve = true; - } else if ( - // Count the intersection of the ray with the - // monotonic curve if the crossing is not the - // start of the curve, except if the winding - // changes... - (py !== yStart || winding !== prevWinding) - // ...and the point is not on the curve or on - // the horizontal connection between the last - // non-horizontal curve's end point and the - // current curve's start point. - && !(py === yStart - && (px - x) * (px - prevXEnd) < 0)) { - if (x < xBefore) { - windLeft += winding; - } else if (x > xAfter) { - windRight += winding; - } - } - } - // Update previous winding and end coordinate whenever - // the ray intersects a non-horizontal curve. - prevWinding = winding; - prevXEnd = values[6]; - // Test if the point is on the horizontal curve. - } else if ((px - values[0]) * (px - values[6]) <= 0) { - isOnCurve = true; - } - } - // If we are at the end of a loop and the point was on a curve - // of the loop, we increment / decrement the on-curve winding - // numbers as if the point was inside the path. - if (isOnCurve && (i >= length - 1 || curves[i + 1].last)) { - windLeftOnCurve += 1; - windRightOnCurve -= 1; - } + if (!vPrev) { + vPrev = curve.getValues(); } - // Use the on-curve windings if no other intersections were found or - // if they canceled each other. On single paths this ensures that - // the overall winding is 1 if the point was on a monotonic curve. - if (windLeft === 0 && windRight === 0) { - windLeft = windLeftOnCurve; - windRight = windRightOnCurve; + // get mono curves + var pa = horizontal ? point.y : point.x; + var aBefore = pa - epsilon; + var aAfter = pa + epsilon; + var v = curve.getValues(); + var monoCurves = (v[coord] < aBefore && v[2 + coord] < aBefore && v[4 + coord] < aBefore && v[6 + coord] < aBefore) || + (v[coord] > aAfter && v[2 + coord] > aAfter && v[4 + coord] > aAfter && v[6 + coord] > aAfter) + ? [v] + : Curve.splitToMonoCurves(v, coord); + for (var j = 0; j < monoCurves.length; j++) { + vPrev = addWindingContribution(monoCurves[j], vPrev, point.x, point.y, windings, isOnPath, coord); } + pathPrev = curve.getPath(); + } + if (isOnPath[0] != null) { + onPathWinding++; + } + var windLeft = windings[0] && (2 - Math.abs(windings[0]) % 2); + var windRight = windings[1] && (2 - Math.abs(windings[1]) % 2); + // Use the on-curve windings if no other intersections were found or + // if they canceled each other. On single paths this ensures that + // the overall winding is 1 if the point was on a monotonic curve. + if (windLeft === 0 && windRight === 0) { + windLeft = windRight = onPathWinding; } // Return both the calculated winding contribution, and also detect if // we are on the contour of the area by comparing windLeft & windRight. // This is required when handling unite operations, where a winding // contribution of 2 is not part of the result unless it's the contour: return { - winding: Math.max(abs(windLeft), abs(windRight)), + winding: Math.max(Math.abs(windLeft), Math.abs(windRight)), contour: !windLeft ^ !windRight }; } + + function propagateWinding(segment, path1, path2, monoCurves, operator) { // Here we try to determine the most likely winding number contribution // for the curve-chain starting with this segment. Once we have enough @@ -459,8 +499,7 @@ PathItem.inject(new function() { parent = path._parent, t = curve.getTimeAt(length), pt = curve.getPointAtTime(t), - hor = Math.abs(curve.getTangentAtTime(t).y) - < /*#=*/Numerical.TRIGONOMETRIC_EPSILON; + hor = Math.abs(curve.getTangentAtTime(t).normalize().y) < 0.5; if (parent instanceof CompoundPath) path = parent; // While subtracting, we need to omit this curve if it is @@ -471,7 +510,7 @@ PathItem.inject(new function() { path === path2 && !path1._getWinding(pt, hor))) ? getWinding(pt, monoCurves, hor) : { winding: 0 }; - break; + break; } length -= curveLength; } @@ -688,7 +727,7 @@ PathItem.inject(new function() { * @return {Number} the winding number */ _getWinding: function(point, horizontal) { - return getWinding(point, this._getMonoCurves(), horizontal).winding; + return getWinding(point, this._getCurves(), horizontal).winding; }, /** @@ -928,101 +967,8 @@ Path.inject(/** @lends Path# */{ * which are monotonically decreasing or increasing in the y-direction. * Used by getWinding(). */ - _getMonoCurves: function() { - var monoCurves = this._monoCurves, - last; - - // Insert curve values into a cached array - function insertCurve(v) { - var y0 = v[1], - y1 = v[7], - // Look at the slope of the line between the mono-curve's anchor - // points with some tolerance to decide if it is horizontal. - winding = Math.abs((y0 - y1) / (v[0] - v[6])) - < /*#=*/Numerical.GEOMETRIC_EPSILON - ? 0 // Horizontal - : y0 > y1 - ? -1 // Decreasing - : 1, // Increasing - curve = { values: v, winding: winding }; - monoCurves.push(curve); - // Keep track of the last non-horizontal curve (with winding). - if (winding) - last = curve; - } - - // Handle bezier curves. We need to chop them into smaller curves with - // defined orientation, by solving the derivative curve for y extrema. - function handleCurve(v) { - // Filter out curves of zero length. - // TODO: Do not filter this here. - if (Curve.getLength(v) === 0) - return; - var y0 = v[1], - y1 = v[3], - y2 = v[5], - y3 = v[7]; - if (Curve.isStraight(v) - || y0 >= y1 === y1 >= y2 && y1 >= y2 === y2 >= y3) { - // Straight curves and curves with end and control points sorted - // in y direction are guaranteed to be monotonic in y direction. - insertCurve(v); - } else { - // Split the curve at y extrema, to get bezier curves with clear - // orientation: Calculate the derivative and find its roots. - var a = 3 * (y1 - y2) - y0 + y3, - b = 2 * (y0 + y2) - 4 * y1, - c = y1 - y0, - tMin = /*#=*/Numerical.CURVETIME_EPSILON, - tMax = 1 - tMin, - roots = [], - // Keep then range to 0 .. 1 (excluding) in the search for y - // extrema. - n = Numerical.solveQuadratic(a, b, c, roots, tMin, tMax); - if (n === 0) { - insertCurve(v); - } else { - roots.sort(); - var t = roots[0], - parts = Curve.subdivide(v, t); - insertCurve(parts[0]); - if (n > 1) { - // If there are two extrema, renormalize t to the range - // of the second range and split again. - t = (roots[1] - t) / (1 - t); - // Since we already processed parts[0], we can override - // the parts array with the new pair now. - parts = Curve.subdivide(parts[1], t); - insertCurve(parts[0]); - } - insertCurve(parts[1]); - } - } - } - - if (!monoCurves) { - // Insert curves that are monotonic in y direction into cached array - monoCurves = this._monoCurves = []; - var curves = this.getCurves(), - segments = this._segments; - for (var i = 0, l = curves.length; i < l; i++) - handleCurve(curves[i].getValues()); - // If the path is not closed, we need to join the end points with a - // straight line, just like how filling open paths works. - if (!this._closed && segments.length > 1) { - var p1 = segments[segments.length - 1]._point, - p2 = segments[0]._point, - p1x = p1._x, p1y = p1._y, - p2x = p2._x, p2y = p2._y; - handleCurve([p1x, p1y, p1x, p1y, p2x, p2y, p2x, p2y]); - } - if (monoCurves.length > 0) { - // Add information about the last curve with non-zero winding, - // as required in getWinding(). - monoCurves[0].last = last; - } - } - return monoCurves; + _getCurves: function() { + return this.getCurves(); }, /** @@ -1037,28 +983,56 @@ Path.inject(/** @lends Path# */{ if (!this.contains(point)) { // Since there is no guarantee that a poly-bezier path contains // the center of its bounding rectangle, we shoot a ray in - // +x direction from the center and select a point between - // consecutive intersections of the ray. - var curves = this._getMonoCurves(), - roots = [], + // x direction and select a point between the first consecutive + // intersections of the ray on the left. + var curves = this.getCurves(), y = point.y, - intercepts = []; + intercepts = [], + monoCurves = []; + // Collect values for all y-monotone curves that intersect the ray at y for (var i = 0, l = curves.length; i < l; i++) { - var values = curves[i].values; - if (curves[i].winding === 1 - && y > values[1] && y <= values[7] - || y >= values[7] && y < values[1]) { - var count = Curve.solveCubic(values, 1, y, roots, 0, 1); - for (var j = count - 1; j >= 0; j--) { - intercepts.push(Curve.getPoint(values, roots[j]).x); + var monoVals = Curve.splitToMonoCurves(curves[i].getValues(), 0); + for (var j = 0; j < monoVals.length; j++) { + var values = monoVals[j]; + if (y >= values[1] && y <= values[7] + || y >= values[7] && y <= values[1]) { + var winding = values[1] > values[7] ? 1 : values[1] < values[7] ? -1 : 0; + if (winding) { + monoCurves.push({values: values, winding: winding}); + windingPrev = winding; + } } } } - intercepts.sort(function(a, b) { return a - b; }); + if (!monoCurves.length) { + // fallback in case no non-horizontal curves were found + return point; + } + var windingPrev = monoCurves[monoCurves.length - 1].winding; + for (var i = 0, l = monoCurves.length; i < l; i++) { + var v = monoCurves[i].values; + var winding = monoCurves[i].winding; + var roots = []; + var x = y === v[1] ? v[0] + : y === v[7] ? v[6] + : Curve.solveCubic(v, 1, y, roots, 0, 1) === 1 + ? Curve.getPoint(v, roots[0]).x + : (v[0] + v[6]) / 2; + //if (y != v[1] || winding != windingPrev) + intercepts.push(x); + windingPrev = winding; + } + intercepts.sort(function(a, b) { + return a - b; + }); point.x = (intercepts[0] + intercepts[1]) / 2; } return point; } + + + + }); CompoundPath.inject(/** @lends CompoundPath# */{ @@ -1067,11 +1041,11 @@ CompoundPath.inject(/** @lends CompoundPath# */{ * are monotonically decreasing or increasing in the 'y' direction. * Used by getWinding(). */ - _getMonoCurves: function() { + _getCurves: function() { var children = this._children, - monoCurves = []; + curves = []; for (var i = 0, l = children.length; i < l; i++) - monoCurves.push.apply(monoCurves, children[i]._getMonoCurves()); - return monoCurves; + curves.push.apply(curves, children[i]._getCurves()); + return curves; } });