From 9e25047b91949e837b7d03381769da1f21fec8d8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=BCrg=20Lehni?= Date: Sun, 5 Jun 2011 22:09:19 +0100 Subject: [PATCH] Further clean ups. --- src/path/PathFitter.js | 49 +++++++++++++++++++++--------------------- 1 file changed, 24 insertions(+), 25 deletions(-) diff --git a/src/path/PathFitter.js b/src/path/PathFitter.js index 3ed4d408..86555268 100644 --- a/src/path/PathFitter.js +++ b/src/path/PathFitter.js @@ -93,15 +93,14 @@ var PathFitter = Base.extend({ // Use least-squares method to find Bezier control points for region. generateBezier: function(first, last, uPrime, tan1, tan2) { - var nPts = last - first + 1, + var epsilon = Numerical.TOLERANCE, pt1 = this.points[first], - pt2 = this.points[last]; - - // Create the C and X matrices - var C = [[0, 0], [0, 0]], + pt2 = this.points[last], + // Create the C and X matrices + C = [[0, 0], [0, 0]], X = [0, 0]; - for (var i = 0; i < nPts; i++) { + for (var i = 0, l = last - first + 1; i < l; i++) { var u = uPrime[i], t = 1 - u, b = 3 * u * t, @@ -124,46 +123,46 @@ var PathFitter = Base.extend({ } // Compute the determinants of C and X - var det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1], - alpha_l, alpha_r; - if (Math.abs(det_C0_C1) > Numerical.TOLERANCE) { + var detC0C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1], + alpha1, alpha2; + if (Math.abs(detC0C1) > epsilon) { // Kramer's rule - var det_C0_X = C[0][0] * X[1] - C[1][0] * X[0], - det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]; + var detC0X = C[0][0] * X[1] - C[1][0] * X[0], + detXC1 = X[0] * C[1][1] - X[1] * C[0][1]; // Derive alpha values - alpha_l = det_X_C1 / det_C0_C1; - alpha_r = det_C0_X / det_C0_C1; + alpha1 = detXC1 / detC0C1; + alpha2 = detC0X / detC0C1; } else { - // Matrix is under-determined, try assuming alpha_l == alpha_r + // Matrix is under-determined, try assuming alpha1 == alpha2 var c0 = C[0][0] + C[0][1], c1 = C[1][0] + C[1][1]; - if (Math.abs(c0) > Numerical.TOLERANCE) { - alpha_l = alpha_r = X[0] / c0; - } else if (Math.abs(c0) > Numerical.TOLERANCE) { - alpha_l = alpha_r = X[1] / c1; + if (Math.abs(c0) > epsilon) { + alpha1 = alpha2 = X[0] / c0; + } else if (Math.abs(c0) > epsilon) { + alpha1 = alpha2 = X[1] / c1; } else { // Handle below - alpha_l = alpha_r = 0.; + alpha1 = alpha2 = 0.; } } // If alpha negative, use the Wu/Barsky heuristic (see text) // (if alpha is 0, you get coincident control points that lead to // divide by zero in any subsequent NewtonRaphsonRootFind() call. - var segLength = pt2.getDistance(pt1), - epsilon = Numerical.TOLERANCE * segLength; - if (alpha_l < epsilon || alpha_r < epsilon) { + var segLength = pt2.getDistance(pt1); + epsilon *= segLength; + if (alpha1 < epsilon || alpha2 < epsilon) { // fall back on standard (probably inaccurate) formula, // and subdivide further if needed. - alpha_l = alpha_r = segLength / 3; + alpha1 = alpha2 = segLength / 3; } // First and last control points of the Bezier curve are // positioned exactly at the first and last data points // Control points 1 and 2 are positioned an alpha distance out // on the tangent vectors, left and right, respectively - return [pt1, pt1.add(tan1.normalize(alpha_l)), - pt2.add(tan2.normalize(alpha_r)), pt2]; + return [pt1, pt1.add(tan1.normalize(alpha1)), + pt2.add(tan2.normalize(alpha2)), pt2]; }, // Given set of points and their parameterization, try to find